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RESUMO

ABREU, L. S. Estimacédo da acidez de 0leos vegetais via nariz eletrénico através de
uma rede neural feed-forward.2019. Trabalho de Conclusdo de Curso — Escola de
Engenharia de Lorena, Universidade de S&o Paulo, Lorena, 2019.

A modelagem estatistica tem sido de grande valia nos mais variados campos de
conhecimento, como analise de fraudes, métodos de classificacdo e mais recentemente
aplicacbes como identificacdo de imagens. Em tais aplica¢cdes, um modelo que tem
ganhado bastante atencdo nos ultimos tempos sé@o as redes neurais artificias. As redes
neurais tém sido utilizadas como sistemas de classificacdo em narizes eletrbnicos para

identificacdo das substancias analisadas com o nariz.

O presente trabalho propbs-se a modelar os dados coletados com auxilio de um nariz
eletrénico utilizando uma rede neural do tipo feed-forward para estimacéo da acidez de
Oleos vegetais. A pequena quantidade de amostras presentes disponiveis para treino foi
uma dificuldade encontrada no processo de treinamento da rede de forma que este obteve

um coeficiente de correlacao linear no conjunto de validagdo maximo de 0,28.

Uma regressao linear multivariada foi desenvolvida de modo a permitir uma comparacao
de desempenhos. A regressao obteve na tarefa em questao valores superiores ao da rede
neural: 0,9664 de coeficiente de correlacéo linear no conjunto de treino e 0,9150 no de

teste.

Palavras-chave: Redes neurais. Estimacdo de propriedades fisico-quimicas. Modelagem

estatistica. Nariz eletrénico.



ABSTRACT

ABREU, L. S. Estimation of vegetable oils’ acidity with a electronic nose through a
feed-forward neural network.2019. Trabalho de Conclusdo de Curso — Escola de

Engenharia de Lorena, Universidade de S&o Paulo, Lorena, 2019.

Statistical modelling has been of great value in several knowledge fields, such as fraud
analysis, clustering methods and lately on identification of images. In those applications, a
model that has been given special attention lately are artificial neural networks. They have

been applied as classifications systems in electronic noses for compound identification.

The current work aimed at modelling a feed-forward neural network using data read by an
electronic nose for estimation of vegetable oil's acidity. The small number of samples
available proposed itself as a challenge during the training of the network resulting in a

linear correlation coefficient in the validation set of 0,28.

A multivariate regression line was developed in order to establish a comparison between
the model’s performance. The regression line performance was much better than the neural
network one, achieving the value of 0,9664 for the linear correlation coefficient in the training

set and 0,9150 in the validation set.

Keywords: Artificial Neural Networks. Estimation of physico-chemical properties. Statistical

modelling. Electronic Nose.
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1 INTRODUCAO

1.1 CONTEXTUALIZACAO

A partir do advento das maquinas e de suas aplicacfes em tarefas onde seguia-se
uma linha de execucdo sequencial e em ambientes conhecidos, 0 homem comecou a
imaginar a criacdo de maquinas autbnomas que pudessem operar também em ambientes

desconhecidos.

Logo, a criacdo de maquinas autdbnomas traria entdo os beneficios das maquinas,
como precisdo numérica e velocidade de execucdo, para junto de caracteristicas de
processamento do cérebro humano. Caracteristicas como interpolagdo, paralelismo,
generalizacbes, tolerancia a erros e o mais desejado, a capacidade de aprendizado, o que
possibilitaria as maquinas a aprendizagem continua mesmo em ambientes totalmente
novos (MAO, 1996).

Esses ambientes novos exigiriam das maquinas uma elasticidade no
processamento da informacdo que tornaria o processo, assim como no cérebro, nao
sequencial a fim de conseguir compreender 0 novo meio e conseguir atuar de formar
consistente. Nesse sentido os modelos de redes neurais artificiais aplicam uma estrutura
analoga a usada no funcionamento do cérebro (MAO, 1996), tendo-se entdo como
componente basico de uma rede neural artificial 0 neurbnio, que se dispde em camadas
interligadas sucessivamente, estando cada neurbnio conectado com pelo menos outro

neurdnio da rede.

De acordo com SVOZIL; KVASNICKA; POSPICHAL (1997) o funcionamento basico

de uma rede neural se da da seguinte forma:

1. Recebimento por um neurbnio de dados de entrada, podendo esses dados serem
variaveis de entrada da rede ou respostas emitidas por outros neuronios;

2. Processamento dos dados, que consiste na multiplicacdo matricial dos dados de
entrada com uma matriz de pesos e adi¢cdo de um bias. Onde o valor de cada peso
da matriz reflete a influéncia de cada dado na resposta emitida pelo neurdénio e o
bias pode ser interpretado como um segundo ajuste para um melhor resultado de
saida;

3. Aplicacéo do resultado obtido no passo 2 em uma funcdo denominada funcéo de
ativacdo, o que confere as redes a capacidade de modelar processos néo lineares;

4. Disparo do resultado da funcdo de ativacdo proveniente de um neurbnio para

outros neurbnios da rede ou como variavel de saida da rede neural.
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E no que tange a forma como as redes refinam seus algoritmos, de forma a
aumentarem sua precisdo, tem-se trés grupos: treinamento supervisionado, treinamento
nao supervisionado e treinamento por reforgco. O treinamento supervisionado se da através
da comparacao do valor de saida da rede para um dado conjunto de dados com o valor

real.

No treinamento supervisionado a rede realiza calculos para reduzir a diferenca entre
o valor de saida da rede e o valor real para o valor mais préximo possivel de zero. Ja nos
outros dois modelos, respectivamente, a aprendizagem se da através da deteccdo de
padrdes nos dados de entrada e através de estimulos a rede dependendo da resposta que

ela obtém para um conjunto de dados (PRIETO et al., 2016).

Segundo CROSS; HARRISON; KENNEDY (1995) ao contrario dos computadores
convencionais, as redes neurais artificiais ttm seu poder computacional proveniente da
densidade e da complexidade das conexdes entre as camadas de neurdnios, ao ponto de
gue uma rede neural artificial com pelo menos uma camada aproxima de forma satisfatéria
qgualguer outro modelo (DEBAO, 1993), isto é, modelos que fazem aproximacfes de
funcdes, classificadores de padrBes e clusterizadores, que é o0 agrupamento de dados
(GORGENS et al., 2009).

Como reportado por PRIETO et al. (2016), as redes neurais possuem aplicacdes

nos mais variados campos, como por exemplo:

¢ Na medicina através da classificacdo de imagens biomédicas;
¢ Na quimica com a modelagem de processos na area de quimica analitica;
¢ Na genética com a modelagem de genomas, como da Drosophila Melanogaster;

e Na meteorologia com a predi¢do do clima e classificacdo de nuvens.

Focando no ambito das engenharias, temos na engenharia ambiental a
determinagédo da qualidade de aguas potaveis (SALARI et al., 2018) e na engenharia
guimica na analise de falhas em processos quimicos como nos trabalhos de WU e ZHAO
(2018) e também no trabalho de ZHANG e ZHAO (2017).

Ainda no ambito da engenharia quimica, uma aplicagdo das redes neurais seria a
identificacdo de propriedades de substancias quimicas, puras ou ndo, baseadas em um
conjunto de dados de entrada que é utilizado para treinamento da rede neural. Nesse caso,

0 conjunto de dados é obtido a partir de leituras de um nariz eletrbnico através da

passagem de vapores da substancia sob andlise pelo equipamento.

O primeiro esbog¢o de um nariz eletrénico foi com Persaud & Dood em 1982 como

sendo um sistema que pudesse realizar leituras de amostras e entdo identificar a



17

substancia em questédo de forma mais rapida do que por métodos usuais (MAJCHRZAK et
al., 2018).

Segundo GHASEMI-VARNAMKHASTI et al. (2018), o nariz eletrénico tem uma
estrutura proxima da do nariz humano compreendendo assim uma sequéncia de sensores
com especificidades parciais a alguns compostos e um sistema de deteccdo apto a
identificar desde odores simples até mais complexos.

O funcionamento se da pela passagem dos aromas pela sequéncia de sensores de
forma a gerar um sinal elétrico associado a substancia de analise. Esse sinal elétrico
depende da variacao da resisténcia elétrica dos sensores quando uma molécula adsorve
nos sensores. Uma vez gerado o sinal, ele € lido por um software, pré tratado, visando
eliminar ruidos e usado como entrada em um software de reconhecimento que tem como
funcédo identificar a substancia que esta sob analise (GHASEMI-VARNAMKHASTI et al.,
2018).

1.2 JUSTIFICATIVA

Um dos problemas enfrentados por modelos utilizando nariz eletrénico é a perda de
validade do modelo quando se utiliza um volume grande de amostras para validacéo devido
ao excesso de ruido gerado por algumas substancias. Uma solucdo foi obtida por
SIQUEIRA et al. (2018) que fez uso do ruido gerado pelas leituras como variavel de entrada

no modelo por ele descrito.

O nariz eletrdnico apresenta-se especialmente Gtil na afericdo da qualidade de
odores quaisquer emitidos por periodos prolongados, tanto porgue a exposicao repetida a
odores tende a enviesar avaliagbes humanas sobre a qualidade do odor emitido, quanto
porque os odores podem ser toxicos (LISBOA; PAGE; GUY, 2009).

Dentre outras aplicagcdes de destaque para o nariz eletrdnico, segundo LISBOA;
PAGE; GUY (2009), temos:

e Afericdo de niveis de glicose em pacientes diabéticos, entre outras patologias como
a tuberculose;

¢ Monitoramento de processos de cozimento;

¢ Controle de qualidade de fermentados como queijos e cervejas;

e Analises de 4gua e esgoto.

Tendo em vista as aplicacGes do nariz eletrbnico apresentadas, uma outra possivel

aplicacao, tendo em vista a solucéo e resultados obtidos por SIQUEIRA et al. (2018), é o
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uso dos parametros de seu modelo em uma rede neural para estimacao da acidez de 6leos
vegetais, o que possibilitaria analises mais rdpidas em procedimentos rotineiros de
laboratdrio, por exemplo.

1.3 OBJETIVOS
1.3.1 Objetivos gerais

Desenvolver uma rede neural que receba os sinais lidos por um nariz eletrénico

para estimacdo da acidez de 6leos vegetais.
1.3.2 Objetivos especificos

O presente trabalho tem como objetivo a estimacao da acidez de 6leos vegetais
através de uma rede neural feed-forward treinada utilizando o algoritmo de

backpropagation e dados obtidos através de leituras realizadas com um nariz eletrénico.
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2 REVISAO DA LITERATURA

2.1 REDES NEURAIS
2.1.1 Histoérico

O desenvolvimento das redes neurais pode ser dividido historicamente em quatro
maiores momentos (PRIETO et al., 2016):

1. Entre 1940 e 1950 com McCulloch e Pits, que propuseram o primeiro modelo formal

de um neurdnio. Esse modelo considerava a existéncia do neurdnio e de sua
memoria associativa, pensada justamente no modelo dos neurdnios e suas
interacdes entre si.
Algumas descobertas a época sobre as redes neurais bioldgicas influenciaram
grandemente no desenvolvimento das redes, como a ideia proposta por Hodgkin e
Hulexy e pelo psic6logo Hebb. Hodgkin e Hulexy propuseram equacdes sinapticas
em 1942 e em 1949, segundo Hebb, os neurbnios guardavam informacdes de suas
sinapses e faziam uso delas para novos aprendizados;

2. Entre 1960 e 1970 com o desenvolvimento dos algoritmos de aprendizagem tanto

para redes de uma Unica camada como para redes recorrentes. Dentre os métodos,
temos o método dos minimos quadrados, implementacdo de memoarias
associativas, entre outros.
Minsky e Paper, em 1967, publicaram um livro no qual afirmavam que algumas
tarefas exigiriam interconexdo entre os neurbnios. Essa interconexao, na época,
era ainda impossivel devido a falta de equacfes que se adequassem a esse
modelo, fazendo com que o estudo de redes neurais estagnasse durante alguns
anos;

3. Entre 1980 e 1990 com um ressurgimento do interesse pelas aplicagdes com redes
neurais, estudos mais focados sobre a auto-organizacdo das redes e expansao
para redes com mais de duas camadas ocultas foram desenvolvidos. Também
caracterizado pela aplicagdo de métodos Bayesianos e Gaussianos as redes
neurais, 0 que trouxe a aprendizagem de maquinas mais proxima da teoria de
probabilidade.

Uma série de topologias e técnicas novas foram descobertas no periodo, como por
exemplo:
e modelos do tipo self-organizing maps (SOM), que buscam padrdes mais

implicitos em conjuntos de dados;
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e indepedent component analysis (ICA), que foi inicialmente aplicado no
problema da separacéo cega de fontes em 1985 por Herault, Jutten e Anns;
e 0 algoritmo de back-propagation, que sanava os problemas citados por
Minsky e Paper em 1967.
A aplicacdo dos métodos Bayesianos e Gaussianos nos modelos de redes neurais
vigentes a época trouxe esse campo mais proximo a teoria de probabilidade
culminando com a criacdo de um campo denominado Statistical Machine Learning;
4. De 2000 até o presente com a tentativa de melhorar a performance dos modelos
através de técnicas mais avancadas de otimizacao.
Modelos que ganharam uma maior atencéo no periodo foram as Complex-Valued
Networks (CVNN) e as Deep Neural Networks (DNN). CVNNs séo redes neurais
nas quais qualquer variavel pode assumir valores complexos, sendo especialmente
atil em modelagens que envolvam ondas eletromagnéticas.
As DNNs sdo compostas de camadas ocultas dispostas em série, aumentando a
capacidade de processamento da rede neural, sendo (til especialmente em tarefas
mais complexas como processamento de linguagem natural e visdo computacional.
Porém um limitante no uso de DNNs € o alto custo computacional necessario para
treinamento e teste, de forma que métodos para amenizar esse custo tem sido alvo

de bastante interesse.

Em 2002, Maass apresentou o conceito de Liquid state machine (LSM), que sanava
0 problema de processamento em tempo real de varidveis. Nesse modelo, o neurénio
recebe uma série de dados de entrada conseguindo transformar um estado transiente em
uma resposta estavel através do aprendizado da nocéo de igualdade por cada neurbnio.
Aplicacbes de LSMs resultaram em modelagens ainda mais préximas do real

funcionamento de sistemas biolégicos, a saber as sinapses.

Um dos tdpicos de maior interesse da quarta fase foi 0 melhor dimensionamento do
tamanho da rede de forma a obter o melhor desempenho com o menor custo

computacional.
2.1.2 Estrutura de redes neurais do tipo feed-forward

O componente basico de uma rede neural é conhecido como neurbénio. Cada
neurdnio recebe variaveis de entrada, processa-as e emite uma resposta de saida. Em
uma rede neural, cada neurdnio esta conectado com pelo menos um outro neurdnio da
rede de forma que a resposta de saida de um neurbnio € comumente utilizada como

variavel de entrada de outro.
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Segundo BRAGA; CARVALHO; LUDERMIR (2000) definem-se trés tipos de
camada em uma estrutura de rede neural: a camada de entrada, a camada de saida e
camadas que nao a de entrada e a de saida, denominadas ocultas. A camada de entrada
€ responsavel pelo envio sem quaisquer modificagbes dos sinais de entrada para a rede
neural; a de saida pelo envio da(s) variavel(is) resposta(s) da rede e as camadas ocultas
pelo tratamento e envio dos sinais provenientes de camadas anteriores. O esquema de

uma rede neural feed-forward pode ser encontrado na Figura 1.

Figura 1 — Modelo de rede neural feed-forward

Camada de saida

Camadas ocultas

Camada de entrada

Fonte: Adaptada de SVOZIL; KVASNICKA; POSPICHAL (1997)

Segundo HAYKIN (2001), trés componentes basicos encontrados em um neurdnio

1. Conjunto de pesos que faz mencgdo ao peso de cada varidvel de entrada sobre a
variavel de saida. A notacgdo de cada peso, wy, constitui-se de dois nameros kj: k
€ o indice do neurdnio na camada e j a posi¢do do neurdnio na camada anterior;

2. Um operador somador de todos sinais recebidos por cada neurdnio;

Uma fungdo denominada funcdo de ativagdo que permite que a rede modele
problemas que ndo sao linearmente separaveis. O aspecto mais importante que a

funcéo de ativagdo de escolha deve ter é que ela seja diferenciavel.

Uma outra notacao utilizada para os pesos € a seguinte w,l(j, onde [ € o indice da

camada na qual o neurbnio estd; k € o indice do neurbnio na camada [+ 1 e k € o indice
do neurdnio na camada | (SVOZIL; KVASNICKA,; POSPICHAL, 1997).
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Quatro fungdes de ativagao conhecidas sédo (HAYKIN, 2001):

e Funcéo de limiar/Heaviside: foi a funcéo das primeiras redes neurais apresentadas
por McCulloch e Pitts (1943) e simboliza um modelo “tudo ou nada”. A
representacdo grafica da funcao de Heaviside pode ser vista na Figura 2, sendo

matematicamente definida como:

_(0sex<O0
H(x)_{lsex>0 (1)

Figura 2 — Funcao de Heaviside

Hix)

Fonte: SALIH (2015)

¢ Afuncdo sigmoide: apresenta-se como uma funcao intermediaria entre os modelos
lineares e néo lineares e com valores sempre positivos. A representacao grafica
da funcdo sigmoide pode ser vista na Figura 3, sendo matematicamente descrita

comao:

1
1+e™%

o(x) = (2)

Figura 3 — Funcéo Sigmoide
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23

e A funcdo tangente hiperbdlica (Tanh) preserva a forma da fun¢do sigmoide ao
mesmo tempo que permite um intervalo de valores de saida maior. A

representacao gréafica da funcédo se encontra na Figura 4:

ex_e—x

tanh(x) = —— (3)

eX+e™*

Figura 4 — Funcgéo tangente hiperbdlica

100 A
0.75 4
0.50 4
025 1
0.00 4
-0.25 1
-0.50 1

-0.75 1

-1.00 1

20 -15 -8 -5 0 5 1 15 20
Fonte: Préprio Autor
e A funcdo ReLU (Rectified Linear Unit) € uma funcdo que mapeia a identidade no
intervalo positivo das abscissas e 0 no intervalo negativo:
ReLU(x) = max (0, x) (4)

Figura 5 — Funcdo RelLU
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Fonte: Préprio Autor

Tem-se também a adicdo de um termo b, conhecido como bias, que permite uma

maior flexibilidade para o neurénio para o ajuste dos dados. Logo, um neurénio que recebe
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uma entrada x; pode ser descrito, de acordo com HAYKIN (2001), de acordo com a

Equacéo 5 e 6 abaixo, onde f(u,) simboliza uma funcdo de ativagédo qualquer:
Vi = f(ug) (5)
e = Xjeq (Wyj * x5 + by ) (6)

Na Figura 6 esté o fluxograma de uma rede neural idealizado por McCulloch e Pitts,

gue foram os primeiros a idealizarem e projetarem as redes neurais.

Figura 6 — Modelo de neurdnio de McCulloch e Pitts

bias
( b
e AN
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ti ~
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entrada Yk
- ) somatério I
)911°—> gk
N Threshold
Pesos (limiar)

sinapticos

Fonte: HAYKIN (2001)

O processo de calculo de uma rede neural inicia-se com as variaveis de entrada no
comeco da rede neural. Os calculos da Equacdo 6 sdo feitos camada a camada,
comecando da esquerda e indo até a direita, neurbnio a neurdnio, até que os neurbnios da
Gltima camada computem a saida da rede neural. Esse processo é conhecido como

alimentacgé&o positiva ou feed-forward.
2.1.3 Algoritmos de treinamento e métodos de otimizacgéo

O treinamento das redes neurais pode ser dividido em duas categorias (BRAGA;
CARVALHO; LUDERMIR, 2000):

e Supervisionado: sdo modelos de rede neural nos quais a variavel de saida para
um determinado conjunto de dados de entrada é previamente fornecida;
e Na&o supervisionado: modelos onde uma correlagdo entre os dados de entrada é

buscada pela rede neural sem valores de saida previamente conhecidos.

Apos a realizagdo dos célculos de feed-forward pela rede neural parte-se para o

processo de verificagdo da precisdo da rede. A precisdo obtida no primeiro calculo da rede
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neural € comumente baixa, fazendo-se necessario a modificagdo dos Unicos parametros

variaveis da rede: a matriz de pesos e 0s bias associados a cada neur6nio.

O procedimento mais comum utilizado nesse ajuste dos paradmetros da rede neural
€ 0 método de Backpropagation (BP). De acordo com BRAGA; CARVALHO; LUDERMIR
(2000) o método de Backpropagation é uma generalizagdo do método dos minimos
guadrados, fazendo neste caso uso do erro quadrado médio como indicador de

performance.

Esse método, sendo classificado como um método iterativo, utiliza os valores
designados para as matrizes de pesos e de bias na iteracdo anterior para definir os novos
valores desses parametros em uma préxima iteracdo. Esses novos valores sdo calculados
de forma que os pesos e bias convirjam para pontos de minimo da funcéo erro (Equacao
7) (SVOZIL; KVASNICKA; POSPICHAL, 1997).

E=3x(=9) 7

Na Equacéo 7 o termo y € o valor da variavel de saida para um dado conjunto de

dados de treino e Yy € o valor predito pela rede para 0 mesmo conjunto de dados de treino.

A busca do ponto de minimo da funcéo de erro é feita através de métodos de
otimizacao que utilizam o vetor gradiente do erro da saida em funcdo da matriz de pesos
e bias da rede. Dentre os métodos de otimizacdo, podemos citar o gradiente descendente

e métodos mais recentes como o Adam e RPROP.

As Equacbes 8 até 11 representam a deducdo do algoritmo de Backpropagation
fazendo uso do algoritmo de otimizacdo do gradiente descendente. A notacdo das
equacdes é (SVOZIL; KVASNICKA; POSPICHAL, 1997):

o w,ij representa o peso de uma conexao entre dois neurénios k e j;

e asimboliza o parametro denominado taxa de aprendizado;

e [E é afuncgéo erro médio quadrado;

. b,i(j € o bias da camada oculta i;

e Yy, € avariavel de saida da rede neural (Equacao 6);

e U, € a somatdria das entradas em um neurbnio multiplicadas pelos respectivos

pesos com o bias da camada k.

| | ®
witt = wi; — a*( aE) @)
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Uma vez que a rede neural realiza os calculos de Backpropagation em um conjunto
de dados, processo denominado época, os valores da matriz de pesos e bias sao

atualizados para que entdo a rede realize uma nova passagem dos dados pela rede.

Os novos valores obtidos sdo entdo comparados com o0s valores esperados. Se
esses novos valores ndo tiverem atingido um erro minimo esperado, o algoritmo é
executado novamente (SVOZIL; KVASNICKA; POSPICHAL, 1997).

Para gue um modelo tenha um desempenho adequado deve-se alimentar o modelo
com um conjunto de dados representativo (costumeiramente utiliza-se cerca de 60% a 70%
do conjunto de dados total). Esse conjunto garantiria que o modelo funcione bem tanto
para casos de interpolacdo quanto para casos de extrapolacdo, sendo o ultimo o caso de
maior dificuldade de tratamento (SVOZIL; KVASNICKA; POSPICHAL, 1997).

O processo de Backpropagation pode se dar de duas formas (BRAGA; CARVALHO;
LUDERMIR, 2000):

e Local ou on-line: a atualizagdo dos pesos e bias é feita ap0s a apresentagdo de
cada conjunto de dados a rede. Apresenta-se a rede um conjunto de dados, a rede
neural faz os céalculos de feed-forward e backpropagation e atualiza prontamente
0s pesos antes de realizar o calculo em cima de um segundo conjunto de dados de
treinamento.

Este método requer menos memaria para os calculos uma vez que 0s pesos séo

atualizados a cada época e evita que o algoritmo pare em minimos locais;
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Em lote ou off-line: a atualizagdo dos pesos e bias é feita ap0s a apresentacdo de
todos os conjuntos de dados a rede neural.

Este método é preferivel no sentido de que oferece uma melhor estimativa do vetor
gradiente, ja que possui um espaco amostral maior do que no método local.

Um método misto entre os métodos local e em lote é o método dos mini lotes, que

consiste em fazer a atualizacdo dos pesos apés a época de k conjunto de dados, sendo k

menor que o nimero total de conjunto de dados disponivel para treino de uma rede neural.

Neste caso a atualizacéo dos pesos € uma média entre os valores de atualizacdo obtidos

para cada conjunto de dados pertencentes a k (PARK et al., 2018).

Outros algoritmos de otimizacdo que receberam atencdo devido ao pequeno

numero de épocas necessario para convergéncia da funcdo erro, mas que também tem

recebido certa critica devido a seus ganhos reais sao (WILSON et al., 2017):

Adam (Adaptive moment estimation): ao contrario do método do gradiente
descendente, o parametro a varia ao longo do processo de aprendizado da rede. A
cada época de treinamento registra-se o valor da fungéo erro e seu gradiente (g,),
0S pesos entdo sao atualizados através da média moével do gradiente (m,) e do
guadrado do gradiente (v;) que tem seus valores controlados por dois hiper

parametros, 1, S, € [0,1) e pela época t (KINGMA; BA, 2014).
me= By xme_q + (1 —B1) * g (12)
V= B x vy + (1= By) * gf (13)

Mas como m; e v, sdo estimadores enviesados, tem-se um fator de corre¢gdo como

demonstrado nas Equacdes 14 e 15, onde t € a época.

~ me
m= .y (14)
~ Vt
D= =51 (15)

Sendo os pesos atualizados pela Equagdo 16 abaixo, onde 6 é a matriz de
parametros da rede (pesos e bias) e e um hiper parametro do algoritmo com a
finalidade de evitar que a taxa de aprendizado aumente bruscamente em casos

onde 7 é préximo de zero:

Oy = 01 — ax m/(\/VTt‘F €) (16)
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e RMSprop: também pertencente ao grupo de algoritmos que ndo possuem a taxa de
aprendizado constante. Foi descrito por LYON (2017) e, assim como Adam
comporta-se como uma média mével exponencial, tendo como diferenca a forma
como a matriz de parametros da rede é atualizada, como demonstrado nas

Equacbes 17 e 18.

Elg¢]l = B *El[géi]+ (1 —pB) *[g¢] (17)
0, = 61— =« 9t (18)
E[g?]

A diferenca entre os dois métodos reside no fato de que o algoritmo Adam tende
ser mais estavel uma vez que o gradiente atinge uma regido de minimo (HEUSEL et al.,
2017).

2.1.4 Tamanho de redes neurais

O desempenho de uma rede neural € dependente do numero de neurbnios
dispostos em suas camadas ocultas. Um excesso de neurdnios na rede pode causar um
problema conhecido como sobre ajuste, que consiste no ajuste muito préximo da rede aos
dados de treino utilizados, o que implica em uma baixa capacidade de generalizacdo da
rede. Na contraméao desse problema tem-se o baixo desempenho da rede no aprendizado

guando se faz uso de poucos neurdnios (PRIETO et al., 2016).

Quanto as camadas ocultas, um aumento no nimero das camadas tem dois efeitos
negativos mais pronunciados sobre a performance das redes neurais. O primeiro é a
dificuldade para encontrar o melhor minimo local da funcéo erro através do método de
otimizacdo escolhido ( Equagéo 7) e o segundo é a instabilidade causada no termo vetor
gradiente tornando o processo de treinamento mais lento (SVOZIL; KVASNICKA,
POSPICHAL, 1997).

Entretanto, um nUmero razoavelmente grande de camadas ocultas (DNN)
possibilitou o desenvolvimento de redes neurais para tarefas mais complexas, com
destague especial para a classificacdo de imagens e de texto. Além da aplicagdo em
tarefas complexas, modelos de DNNs tem obtido maior sucesso em tarefas antes
realizadas por modelos que ja obtinham boas performances, como predi¢des, calculo de
energia de ativacdo de moléculas, entre outros (LECUN; BENGIO; HINTON, 2015).

A presenca de ruidos nos dados pode aumentar o problema de sobre ajuste de uma
rede neural (SVOZIL; KVASNICKA, POSPICHAL, 1997). Uma abordagem para o
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tratamento de ruidos foi feita por SIQUEIRA et al. (2018), onde utilizou-se o préprio ruido
dos dados como variavel de entrada do sistema estudado.

O numero de neurdnios e o0 numero de camadas ocultas sdo perguntas iniciais no
desenvolvimento de uma rede neural. Métodos desenvolvidos para solucionar o problema

do tamanho ideal da rede podem ser divididos em dois tipos (HAYKIN, 2001):

e Crescimento de rede: parte-se uma rede neural com neurdnios dispostos em uma
ou mais camada(s) oculta(s) e adiciona-se ramificacbes gradativamente de modo a
fazer com que alcance um desempenho satisfatorio;

e Método de poda: parte-se de uma rede neural com um numero elevado de
neurbnios que ja possui um desempenho satisfatorio e neurdnios séo eliminados

gradativamente mantendo o desempenho da rede acima de um limiar desejado.

2.2 NARIZ ELETRONICO

Narizes eletrénicos sao dispositivos que tentam mimetizar o funcionamento do nariz
humano na tarefa de reconhecimento de aromas. Zwaardemaker e Hogewind foram os
primeiros a estudar o comportamento elétrico de volateis. Partindo de medidas feitas sob
um fino spray de agua, descobriram que substancias volateis causavam alteracdes nas
propriedades elétricas do spray de 4gua tornando possivel a deteccdo de componentes

volateis através de métodos sensoriais ndo classicos (WILSON; BAIETTO, 2011).

O nariz humano realiza a tarefa de identificacdo com o auxilio de cerca de 390
receptores olfativos que se conectam a moléculas volateis causando modificacbes
estruturais nos receptores. Essas modificacBes fazem com que sinais sejam enviados ao
cérebro para identificacdo (ZHANG et al., 2018).

Ja o nariz eletrbnico faz o processo de identificacdo através de uma série de
sensores gque apresentam respostas que dependem das moléculas adsorvidas. Essas
respostas séo geralmente medidas em fungéo da variagdo de uma propriedade fisica do
sensor (GHASEMI-VARNAMKHASTI et al., 2018).

Os sensores utilizados para identificacdo s&o escolhidos de acordo com a
aplicacdo, de forma que o sensor escolhido seja sensivel & maior parte possivel das
substancias volateis a serem identificadas. Nesse sentido uma baixa seletividade dos
sensores é desejada, permitindo que uma mesma amostra seja detectada por mais de um

sensor, incrementando o sinal de determinada substancia (WILSON; BAIETTO, 2011).
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Apbs a adsorcdo da molécula de odor nos receptores do nariz eletrénico, o sinal
elétrico gerado é identificado e gravado em um banco de dados para servir como posterior
referéncia para novas analises (ZHANG et al., 2018).

Uma seletividade muito baixa de um sensor pode resultar em sinais elétricos para
uma quantidade muito grande de moléculas, aumentando o ruido na resposta. Métodos
para tratamento desse ruido tém sido desenvolvidos com auxilio de métodos estatisticos
como o LDA (Linear Discriminant Analysis) e as redes neurais artificiais (ZHANG et al.,
2018).

Pelo fato de se utilizar de mecanismos quimicos e ndo biologicos na identificacao
de moléculas, o nariz eletrénico apresenta algumas desvantagens perante o nariz humano
como (ZHANG et al., 2018):

e nao deteccao de substancias a niveis abaixo de pbm (partes por bilhdo);

o dificuldades em separar misturas.

No que tange as vantagens do nariz eletrbnico frente ao nariz humano temos
(MAJCHRZAK et al., 2018):

e Maior reprodutibilidade de pareceres sobre aromas;
e Analises mais rapidas e menos custosas;

e Auséncia de vieses humanos como fadiga ou acomodacéo a odores.

Um modelo esqueméatico do processo desde a exibicdo da amostra até a

identificacdo da substancia em questéo é apresentado na Figura 7:
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Figura 7 — Diagrama de bloco de um nariz eletrénico
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Fonte: Adaptada de GHASEMI-VARNAMKHASTI et al., (2018)

O desenvolvimento no ramo dos narizes eletrénicos tem focado especialmente na
estabilizacdo dos sinais lidos. Solucbes como o uso de espectrdmetros de massa em
narizes eletrénicos tém simbolizado um avango nesse sentido, uma vez que possuem
sensores dotados de maior seletividade (MAJCHRZAK et al., 2018).

Dentre as classificacbes existentes para 0s narizes eletrdnicos temos como
principal critério o tipo de sistema de detec¢cdo empregado pelo aparelho (MAJCHRZAK et
al., 2018):

e Semicondutores: sdo modelos mais econbmicos, mas apresentam baixa
estabilidade do sinal de saida;

e Sensores eletroquimicos: apresentam um sinal mais estavel quando comparado
com os semicondutores, especialmente por reduzir interferéncias como da
umidade. Sao geralmente maiores, 0 que pode se tornar uma barreira para algumas
aplicagoes;

e Sensores piezoelétricos: sdo compactos, o que facilita o uso em trabalhos de
campo; no entanto, possuem medidas que sao replicadas com dificuldade;

e Espectrbmetros de massa: possuem alta sensibilidade e um vasto leque de
aplicacdes, porém sdo mais caros que 0s outros mencionados até aqui;

e Cromatografia gasosa: permite analises quantitativas e qualitativas, mas

demandam um tempo maior para andlise das amostras.

A combinacéo de sensores pode melhorar as analises realizadas com o auxilio do
nariz eletrénico, j& que cada sensor apresenta uma seletividade especifica, aumentando
dessa forma a quantidade de informacdo para deteccdo de substancias. Deve-se, no

entanto, atentar-se ao nimero de dimensoes, relacionado com o nimero de sensores,
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gerado por andlise quando do uso de sensores variados. Um excesso no numero de
dimensbdes pode acarretar em um ruido que prejudica uma avaliacdo mais criteriosa do
equipamento (ROCK; BARSAN; WEIMAR, 2008).

Dentre algumas limitagcdes enfrentadas na identificacéo de substancias com narizes
eletrbnicos tem-se a diminuicdo no desempenho de alguns modelos quando se faz uso de
um grande numero de amostras. Essa diminuicdo, como demonstrado por BOEKER
(2014), é devida ao aumento na variabilidade dos dados de entrada.

A variabilidade apresentada nos sinais de um nariz eletrénico depende de Vvarios
fatores, em especial da substancia em si. A utilizacdo da variabilidade como uma variavel
de auxilio na identificagdo de substancias foi realizado por SIQUEIRA et al. (2018) por meio

da modelagem do sinal do nariz eletrénico através de uma equacao estocastica diferencial.

A melhora na performance quando do uso da variabilidade em problemas de
identificacao foi reportado por DUTTA et al. (2006). Em seu trabalho, constatou-se que um
melhor desempenho na identificagdo de bactérias é obtido quando da adicdo de um ruido
gaussiano artificial ao sinal lido. A essa melhora na identificacdo quando da adi¢do de um

ruido gaussiano em fendmenos nao lineares da-se o nome de ressonancia estocastica.

Um exemplo do efeito da vantagem quando do uso de equac¢les estocasticas
diferenciais na identificacdo de compostos através de sinais de um nariz eletrdnico pode

ser visto na Figura 8:

Figura 8 — Sinal de um sensor para duas substancias diferentes com mesmo AR
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Fonte: Adaptada de SIQUEIRA et al. (2018)

No processo de identificagdo, A, medido por AR, é o platd comumente utilizado para

identificacdo de uma substancia com o uso de um nariz eletrénico. As curvas da Figura 8
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séo de substancias diferentes e apesar disso apresentam o mesmo AR, o que pode levar

a conclusdes erroneas sobre a substancia em questéao.

Os percentuais de amostras classificadas corretamente obtidos por SIQUEIRA et
al. (2018) com a aplicacdo da equacao estocéastica diferencial sdo mostradas abaixo. Os
valores foram obtidos utilizando-se trés sensores dentre os 32 disponiveis no nariz
eletrénico utilizado. Esses trés sensores foram escolhidos aleatoriamente dentre os que

mais apresentaram um comportamento tipico ao longo das medidas:

e Com redes neurais: 67%;
e Com PCA (utilizando apenas o primeiro componente principal): 58%;
e Com LDA :63,6%;

e Modelo estocastico: 91,6%.

A alta performance obtida pelo modelo estocastico é devida ao fato de o modelo
utilizar-se de cinco parametros e da prépria variabilidade dos dados no processo de
identificacdo de substancias. O modelo estocastico €, portanto, uma alternativa
consideravel para caracterizacdo de substancias nao identificaveis por métodos
convencionais (SIQUEIRA et al., 2018).
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3 MATERIAIS E METODOS

3.1 NARIZ ELETRONICO

O presente trabalho foi executado com auxilio de dados coletados via nariz
eletrdnico Cyrano Sciences’ Cyranose 320 no Laboratério de Biocatalise — EEL/USP. O
nariz eletrdnico Cyranose 320 possui 32 sensores a base de polimeros e nanoparticulas

de carbono em série.
3.1.1 Tempo de exposicdo

O tempo durante o qual o nariz ficou exposto as amostras foi curto o suficiente (15
segundos), de modo a garantir uma concentracdo constante de substancias volateis ao
longo das leituras. O tempo de medicao é o periodo no qual a agulha ficou inserida dentro
do frasco até sua retirada (SIQUEIRA et al., 2018).

Os dados utilizados como base nesse trabalho foram coletados e pré-tratados por
SIQUEIRA et al. (2018) como discutido em 3.1.2 Pré-tratamento dos dados.

3.1.2 Pré-tratamento dos dados

Pelo fato de o tempo de succéo do material proposto no modelo ser menor do que
o0 tempo de remocdo, os dados obtidos no final do periodo de succdo sdo descartados.
Esse pré-tratamento nos dados é uma etapa importante no calculo dos parametros da
Equacéo 27 (SIQUEIRA et al., 2018).

Na metodologia utilizada por SIQUEIRA et al. (2018), apenas a fase de adsorcéo
foi modelada e a linha de base do sinal foi separada da etapa de leitura do sinal através da
adsorcao de elementos volateis no inicio da medig&o. O critério de rejeicdo de dados foi
com o auxilio do coeficiente de correlagéo linear (R?) calculado entre os dados lidos e os

valores provenientes da Equagéo 27.
3.1.3 Modelagem do sinal do nariz eletrénico

A equacdo estocastica diferencial escrita por SIQUEIRA et al. (2018) é apresentada
abaixo. Ela foi desenvolvida a partir dos mecanismos de adsor¢éo e dessorgéo de sensores
propostas por LUNDSTROM (1996).

O mecanismo proposto por LUNDSTROM (1996) tem as seguintes premissas como

verdadeiras:

1. Asvelocidades de adsorcao e dessorgdo sao obtidas através de modelos cinéticos

de ordem 1;
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2. O sinal (S) lido pelo nariz eletrénico € proporcional ao numero de substancias
volateis ligadas aos sitios ativos (n) dividido pelo nimero total de sitios ativos (N).
Logo o sinal (S) é S=n/N;

3. Considera-se a concentracao da substancia volatil constante ao longo de todo o
processo de medicéo.

As premissas 1-3 resultam na Equacao 19, onde k e b sdo parametros obtidos por

meio do ajuste do modelo aos sinais de entrada e do tempo de exposigéo.
S(t) =bx(1—e k0 (19)

ApO6s um longo periodo de tempo, o sistema atinge o estado estacionério e o valor

da Equacéo 19 atinge um platé horizontal de valor b.

Uma quarta premissa foi adotada no desenvolvimento devido a identificacdo de

inclinacdes positivas ou negativas ao invés do platd (SIQUEIRA et al., 2018):
4. Criacdo de um estado precursor (PE) antes do estado gerador de sinal (PE).

Portanto, nos dados utilizados nesse trabalho, o sinal S(t) € uma func¢éo do nimero
de estados precursores ocupados (SIQUEIRA et al.,, 2018). Um esquema para o

mecanismo de adsor¢éo e dessorcao proposto na Figura 9:

Figura 9 — Modelo para o mecanismo de adsorcao e dessor¢céo
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Fonte: SIQUEIRA et al. (2018)

As premissas de 1 - 4 foram entdo aplicadas na modelagem do mecanismo de
adsorcao e dessorcéo, onde L é a fracdo de sensores ndo ocupados (SIQUEIRA et al.,
2018):

L+PE=1 (20)

Assumiu-se que os estados precursores podem ser classificados entre os que ja
geraram (PE) e os que ainda irdo gerar sinal (FPE) (SIQUEIRA et al., 2018):

PE = FPE + PE’ (21)
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A partir da Figura 9 obteve-se a Equacéo diferencial 22, onde k, é a constante de
equilibrio entre o processo de adsorcdo e dessor¢cado. Na Equacgdo 21 assumiu-se uma
reacdo de equilibrio rapida para a criagdo do estado precursor (PE) (SIQUEIRA et al.,
2018):

dPE _ ML

— _ — k2 _
?—kl*M*L kz*PE—0—>k1—ke o5 (22)
Isolando L e substituindo na Equacgéao 20, tem-se:
PE = —— (23)
ke

Com auxilio da Figura 9, deduziu-se a Equacéo diferencial 16 para o estado gerador
de sinal (SIQUEIRA et al., 2018):

dPE! ’ k '
—— =ks % PE — ky* PE =]+%g-k4*PE (24)

Resolvendo a Equacéo diferencial 23 para PE’ (0) =0:

PE' = ks o (1 — e kart) (25)

= T
k4‘*(1+ﬁ)

Por fim, assumiu-se que a taxa de variacdo do sinal é proporcional a ocupacéo de
sitios livres do estado precursor (SIQUEIRA et al., 2018):

% _ ky FPE = ky » (PE — PE)

ds 1 k kyxekaxt
— =k * -— =+ 26
ac = K <1+% (1) e (1) (26)

Resolvendo-se a Equacao 26 para S(0) = 0, tem-se:

kg _ k_3 k3xks _ p—kgxt
5@)—(H%)*( m)*t+'EBZG¥%*(1 ekart) 27)

Denominando o termo que multiplica t por a, o que multiplica (1 — e *+*!) porb e

k,=k, tem-se:
S(t)=axt+bx*(1—e k) (28)

Uma modelagem também foi proposta para o periodo de purga do sistema,
momento onde ocorre a remog¢do das substancias volateis do sensor em um tempo Tr a

partir do inicio da medig&o. Para fins de célculo, transladou-se o tempo para t=t-Tr, onde
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t’ é o tempo transcorrido desde o inicio do processo de medi¢édo (SIQUEIRA et al., 2018).
Na escala de tempo t os valores de S, PE, PE’ e FPE tornam-se:

S(0)=Sr.  PE(0)=PEr,  PE'(0)=PET,  FPE(0) =FPEr

Modelou-se entdo a variagdo de PE de acordo com as condi¢g6es acima e através
da Equacéo 29 (SIQUEIRA et al., 2018):

ZE = —(kp + k) * PE (29)

Sendo a solugéo da Equacao 29 dada pela Equacéo 30:
PE(t) = PEr x e~ (katks)st (30)

A variacdo de PE’ foi modelada de acordo com a Equacao 31 e considerando-se a
condicao inicial PE’(0) = PE’r (SIQUEIRA et al., 2018):

dsf =k, * PE — k, x PE' (31)

A solucdo da Equacéo 31 é dada pela Equacéao 32:

ky*PErxe~(K2tk3)st g . pprse—kart

’ — ' —(ky)xt
PE'(t) =PE'r*e + ky—(ka+ks) ka—(k2+k3)

(32)
E a variacdo do sinal S foi modelada pela Equacao 33 (SIQUEIRA et al., 2018):
S(t) =Sr+ D (1 — e etk t) — [ 5 (1 — g~hart) (33)

Onde D e E foram definidos como:

_ks*PET*(k2+k3—k4+k3)
— (kg k3 —ky) x (kg + k)

: k3 * PETr kg
, E=(PEr+

ko + ks —ks) ky

Portanto a modelagem do sinal lido por um nariz eletrénico, considerando a purga
pode ser descrito por (SIQUEIRA et al., 2018):

@) = { ax t+b *_e_(k2+k3)*t, set _< Tr_
Sr+ D x (1 — e ketka)*(t=TN) — F x (1 — e k(TN se t > Tr
(34)
Na Equacéo 34, o termo Sr é dado por:
Sr=axTr+bx(1—e k) (35)

A aplicacdo de um modelo estocéstico no sinal de um nariz eletrénico foi devida ao

fato de que a variabilidade apresentada em leituras com nariz eletrdnico depende da
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prépria substancia sob andlise. Logo, por depender da prépria substancia, acredita-se que
essa variabilidade possa auxiliar na identificacdo da substancia (SIQUEIRA et al., 2018).

A equacdao estocéstica diferencial utilizada nesse trabalho para modelagem do sinal
do nariz eletrénico foi proposta por (SIQUEIRA et al., 2013). Na Equacgéo 36, a, b,c, kep
sdo os parametros que dependem do sinal medido e X; é a medida da variabilidade do

sinal em um tempo qualquer t em minutos.

Cc
(t+1)P

bk
dX, = (a+20%) * dt + « dW, (36)
O algoritmo utilizado para a obtencao dos parametros da Equacao 28 é baseado
numa estimativa inicial do valor de k e foi descrito por SIQUEIRA et al. (2013) tendo como

base técnicas para estimativas de equacfes diferenciais estocasticas e de amostragem
(SIQUEIRA et al., 2018).

Uma variacéo apresentada na metodologia descrita por SIQUEIRA et al. (2013) esta

no parametro c:

37)

Sendo Q; calculado através da Equacao 38:
Q _ (AXi)z 38
P = (38)

3.2 INDICE DE ACIDEZ

Os 6leos vegetais utilizados como amostras para o0 nariz eletrdnico foram
caracterizados quanto ao teor de acidez, valor de peréxido, viscosidade, densidade e cor.
As amostras foram coletadas na cidade de Lorena-SP de duas fontes diferentes:
residencial e comercial em um total de 4 vezes a cada 20 dias visando obter as amostras
em diferentes periodos (SIQUEIRA et al., 2018).

As amostras foram filtradas a vacuo, homogeneizadas e estabilizadas em cerca de
23°C antes de serem submetidas ao nariz eletrdnico. Cada uma das 12 amostras foi
introduzida em 10 frascos de 45 ml de capacidade com uma capa de borracha, totalizando
120 frascos, sendo 60 de cada fonte, residencial ou comercial. Os frascos ficaram em

repouso durante 12h & 23°C para permitir o equilibrio liquido vapor, sendo entédo a agulha
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do nariz eletronico introduzida na regido do frasco acima da mistura. A medida de acidez
foi realizada de acordo com as normas da Association of Official Analytical Chemists
(AOAC) (SIQUEIRA et al., 2018).

3.3 REDES NEURAIS ARTIFICIAIS

A rede neural foi escrita em linguagem Python, versdo 3.7, utilizando a biblioteca
Keras (CHOLLET, 2015) e a biblioteca Tensorflow (GOOGLE, 2015) como backend e
tendo como variaveis de entrada os parametros do modelo estocastico e como variavel de

saida a acidez dos 6leos vegetais.
3.3.1 Escolha das variaveis independentes

Os dados utilizados para treino da rede representaram 70% do total de dados da
base original; e como cada um dos 12 6leos foi amostrado 10 vezes, garantiu-se que uma

guantidade igual de leituras de cada 6leo estivesse presente na base de treino.

A fim de identificar os sensores a serem utilizados na rede neural, fez-se um filtro
utilizando o R2 de cada sensor, que media o ajuste do modelo estocastico ao sinal do nariz
eletrbnico. Assim, sensores que nao obtiveram pelo menos uma das 120 amostras com R2

maior ou igual a 0,99 foram descartadas.

Como os parametros ¢ e p da Equacdo 28 modelam a variancia do sinal enquanto
os outros trés a, b e k modelam a média, utilizou-se apenas esses trés ultimos parametros

na construcao da rede.

Visando escolher o conjunto de variaveis a ser utilizado no modelo, foram
construidas duas redes neurais, uma com funcéo de ativacdo sigmoide e outra com funcéo

de ativagao tangente hiperbdlica.

Para cada uma delas, inicialmente modelou-se cada um dos parametros disponiveis

por vez e registrou-se seu erro médio absoluto (MAE).

Escolhendo-se entdo o preditor com o menor valor de MAE de valida¢éo, modelou-
se novamente uma rede neural para cada um dos parametros restantes, sendo que neste
caso as variaveis de entrada eram o preditor escolhido anteriormente e cada um dos
restantes. Prosseguiu-se dessa forma até que todos os parametros fossem adicionados a

rede.

Dado o pouco volume de dados, utilizou-se nesta etapa validacdo cruzada com 3

particbes para se garantir uma maior robustez dos dados obtidos.
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A configuragéo dessa rede neural inicial, doravante mencionada como rede simples,
foi:

e 1 camada oculta com 5 neurdnios;

e Funcdo de ativacdo identidade na saida;

e Algoritmo de otimizacdo do método de Backpropagation sendo o gradiente
estocastico descendente;

e Dados normalizados entre [0,1] para a rede com fungcéo de ativacdo sigmoide e
dados convertidos em valores z para a rede com funcdo de ativagdo tangente
hiperbdlica;

e 200 épocas.

Somou-se entdo a ordem em que cada variavel foi adicionada as duas redes

neurais a fim de gerar um ranking de importancia de cada variavel ao modelo.

O embasamento por tras de tal mecanismo para escolha de variaveis € o de que,
mesmo utilizando redes neurais com diferentes func¢des de ativacdo, e consequentemente
intervalos de dados normalizados diferentes, tais variaveis foram identificadas pela rede

como as que mais aumentaram a capacidade preditiva da rede.
3.3.2 Ajuste dos parametros

Apoés a selecdo de variaveis, converteu-se os valores de entrada e saida da rede
para valores z e entdo verificou-se como altera¢des na funcéo de ativacdo e no otimizador
utilizado no método de Backpropagation influenciavam o R2 de teste da rede, para que

esses dois melhores parametros pudessem ser definidos.

As funcdes de ativacdo testadas neste trabalho foram: sigmoide, tangente
hiperbdlica e ReLU. Ja os algoritmos de otimizagdo foram: Gradiente Descendente
Estocastico, RMSprop e Adam. Todos as analises utilizaram validacdo cruzada com 5

particoes.

Partindo entdo do melhor conjunto de fungéo de ativagéo e otimizador, variou-se o
numero de neurdnios na rede e ponderou-se a necessidade da adi¢cdo de camadas ocultas

adicionais em caso de baixo desempenho da rede na predicéo.
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4 RESULTADOS E DISCUSSAO

4.1 ESCOLHA DE SENSORES

Para verificar quais sensores obtiveram pelo menos uma amostra com R2 maior ou
igual a 0,99, contou-se quantos deles respeitaram esse critério. O resultado é exibido na
Figura 10 abaixo.

Figura 10 — Contagem do nimero de amostras por sensor segundo o critério R2>=0,99
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Fonte: Proprio Autor

Um total de 13 sensores passaram por esse critério de aderéncia dos dados ao
modelo, sendo que o sensor 31 foi o0 que melhor se ajustou ao modelo, com um total de 40
amostras com um R2 maior ou igual a 0,99. Seguido pelo sensor 6 com 28 amostras e pelo

sensor 23 com 16.

Buscando analisar o comportamento dos parametros, fez-se um boxplot de cada
parametro, como mostrado nas figuras abaixo para os parametros a, b e k a fim de observar

como os valores de cada um dos parametros se comportam.
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Figura 11 — Boxplot do parAmetro a para os sensores selecionados
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Pela analise da Figura 11 percebe-se que o parametro a obteve distribuicdes em
sua grande maioria com muitos outliers, a excecao desse parametro para 0 sensor 5 que

obteve apenas um outlier.

Figura 12 — Boxplot do parametr b o para os sensores selecionados
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Fonte: Préprio Autor

Analisando-se entdo a Figura 12 para o parametro b quase todos os sensores
obtiveram distribuicbes bem comportadas, em especial os obtidos no sensor 28, 5, 12, 16
e 31.



Figura 13 — Boxplot do parametro k para os sensores selecionados
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E para o parametro k, analisando-se a figura acima, o nimero de outliers por sensor

foi parecido com os obtidos para o parametro b, sendo 0s sensores mais comportados 0s

de numero 5, 20 e 23.

4.2 ESCOLHA DOS PARAMETROS

Utilizou-se entdo a rede neural simples com funcdo de ativacdo sigmoide e a

abordagem descrita em 3.3.1. Os dados sao exibidos na Figura 14.

Figura 14 — Erro médio absoluto vs nimero de preditores com fungdo de ativacdo sigmoide
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A Figura 15 exibe os resultados obtidos pela mesma abordagem da figura anterior,
mas utilizando como funcéo de ativacdo a funcéo tangente hiperbdlica.

Figura 15 — Erro médio absoluto vs nimero de preditores com funcdo de ativagcdo tangente
hiperbdlica
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As curvas sdo as tipicamente obtidas quando métricas de precisdo de um modelo
sdo plotadas contra seu grau crescente de complexidade, sendo o grau de complexidade

aqui representado pelo nimero de preditores.

Nestes casos ap6s um determinado grau de complexidade a métrica de precisao
no conjunto de dados de treino cai com o aumento da complexidade, ao passo que a
mesma métrica no conjunto de validagcdo atinge um equilibrio ou entdo aumenta
novamente. Essa inversdo/estabilizacdo € interpretada como o ponto onde o modelo

comeca a sobreajustar os dados de treinamento.

Verificando-se entdo a ordem de entrada de cada varidvel em seu respectivo
modelo e somando-se esses indices. Os resultados obtidos apenas para primeiras dez

variaveis com a menor soma das ordens de entrada sao exibidos na Tabela 1.
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Tabela 1 — Ranking de variaveis de acordo com a entradas nos modelos

., . . Ordem de entrada tangente Somadas
Variavel Ordem de entrada sigmoide hiperbélica ordens
9a 4 6 10
9%b 7 3 10
23b 3 11 14
20k 11 4 15
6a 13 5 18
20a 17 2 19
9k 6 15 31
5b 2 21 23
17k 8 16 24
3la 16 10 26

Fonte: Préprio Autor

Entdo as cinco primeiras variaveis com a menor soma das ordens de entrada (9a,
9b, 23b, 20k, 6a) foram selecionadas para modelar a rede neural final. Esse namero foi

escolhido tendo em vista 0 pouco numero de amostras disponiveis para treinamento.

Verificando-se nas Figura 11, Figura 12 e Figura 13 percebe-se que dos parametros
selecionados, os mais bem comportados sao o 20k, 23b e 9b por apresentarem poucos
outliers, ao passo que os parametros 9a e 6a possuem valores com uma maior quantidade

de outliers.

4.3 AJUSTE DOS PARAMETROS

Tendo em vista o0 pouco volume de dados disponiveis, utilizou-se valida¢do cruzada
em cinco partices na etapa de ajuste dos parametros visando uma maior robustez dos

resultados obtidos.

Normalizando-se entdo os dados em valores z e variando os parametros descritos

em 3.3.2 utilizando-se 200 épocas, obteve-se os resultados exibidos na Figura 16.
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Figura 16 — R2 de treino e teste variando-se a funcéo de ativacdo e otimizador
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Por motivos de visualizacdo, valores negativos foram convertidos em zero. Assim,
analisando a Figura 16, nota-se que a funcdo ReLU exibiu um melhor R2 de 0,5977 nos
dados de treino quando em conjunto com o otimizador SGD. No entanto, no conjunto de
dados de teste obteve um desempenho nulo, independente do otimizador utilizado para os
dados de teste. Isso pode ser caracterizado como um caso de grande sobre ajuste da rede

em relacdo aos dados de treino.

A funcéo sigmoide apresentou, assim como a funcdo ReLU, seu melhor valor de R2
de treino (0,4548) quando treinada com o otimizador SGD e também um R2 de teste nulo.
Ja quando utilizada com o otimizador RMSprop, o R2 de treino foi de 0,3314 e o de teste
0,1042.

Assim como a funcéo sigmoide e RelLU, os dados obtidos com a fungéo tangente
hiperbdlica (Tanh) exibiram o melhor R2 de treino e um R2 de teste nulo quando a rede foi
treinada com o SGD. E assim como a sigmoide, a fun¢cdo Tanh também obteve o melhor

R2 de teste(0,1167) quando treinada com o RMSprop.

Analisando-se o efeito do otimizador sobre 0 R2 de treino, nota-se que o SGD exibe
uma maior capacidade de ajuste aos dados, no entanto essa capacidade falha ao ser
testada contra novas amostras, ou seja, ndo permite uma capacidade de generalizagéo

resultando no R2 de teste obtido de O.

Dados os baixos valores exibidos na Figura 16, verificou-se como a alteracdo da
funcéo de saida da rede afetaria os resultados. Os resultados, mantendo-se a funcao de

ativacdo da camada oculta como a ReLU e variando a de saida, séo exibidos na Tabela 2.
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Tabela 2 — R2 de treino e teste para rede neural com funcédo de ativagdo RelLU na camada oculta e
variando a de saida

R2 treino R? teste
Funcéo RelLU Sigmoide Tanh RelLU Sigmoide Tanh
Otimizador
Adam 0,4067 0,3168 0,4295 -1,6461 0,0391 -0,0769
RMSprop 0,2838 0,2568 0,3905 -0,4124 0,0179 0,0049
SGD 0,4455 0,2996 0,4649 -1,37701 0,0035 -0,2784

Fonte: Préprio Autor

Comparando-se os dados acima com os valores obtidos para a funcdo ReLU da
Figura 16, percebe-se que nenhuma das fungdes utilizadas na saida obteve um R2 de treino
melhor, independente do otimizador. JA no que tange aos resultados de teste, todas
obtiveram uma ligeira melhora comparada com os valores referéncia , sendo que o melhor

desempenho é atribuido ao uso da funcdo sigmoide na camada de saida.

O fato de o R2 de treino ter sido menor com um ganho simultdneo no R2 de teste
(méximo de 0,0391 vs -0,0315) pode ser associado a uma leve melhora na capacidade de
generalizacéo da rede, no entanto, os baixos valores ainda caracterizam um sub ajuste dos

da rede aos dados.

Os resultados mantendo-se a funcdo de ativacdo da camada oculta como a

sigmoide e variando a de saida séo exibidos na Tabela 3.

Tabela 3 — R2 de treino e teste para rede neural com fun¢do de ativacdo sigmoide na camada oculta
e variando a de saida

R2 treino R? teste
Funcao ReLU Sigmoide Tanh RelLU Sigmoide Tanh
Otimizador
Adam 0,2177 0,2109 0,3479 -0,1138 0,0399 0,0689
RMSprop 0,2249 0,1752 0,3232 0,0137 0,0484 0,0951
SGD 0,2233 0,1839 0,3552 -0,0034 0,0068 0,0307

Fonte: Préprio Autor

Comparando-se entdo os resultados obtidos para a funcdo sigmoide da Figura 16,
nenhuma melhora significativa no desempenho para os valores de treino foi observada. Ja
para os dados de teste, apenas quando se modelou a rede ou com 0 RMSprop ou com a

funcéo de saida como a ReLU néo se obteve melhora perante os dados referéncia.
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Neste caso, 0 R? de treino das combinag¢des foi menor quando comparado com a
rede original e os R2 de teste foram, em média, ligeiramente maiores, sofrendo do mesmo

efeito que a rede com funcdo da camada oculta ReLU que é o sub ajuste.

Por fim, os resultados mantendo-se a funcéo de ativagdo da camada oculta como
a tangente hiperbdlica e variando a de saida sao exibidos na Tabela 4.

Tabela 4 — R2 de treino e teste para rede neural com funcdo de ativagao tangente hiperbdlica na
camada oculta e variando a de saida

R2 treino R? teste
Funcéo RelLU Sigmoide Tanh RelLU Sigmoide Tanh
Otimizador
Adam 0,3326 0,2891 0,3752 -0,2075 -0,0285 0,06460
RMSprop 0,2767 0,2589 0,3426 -0,0790 -0,0005 0,1069
SGD 0,5370 0,2799 0,4293 -0,6988 -0,0176 0,1051

Fonte: Préprio Autor

Neste caso, o R2 de treino dos dados referéncia (Figura 16) foi menor para todos 0s
casos analisados. Ja para os resultados no conjunto de teste, o uso da funcdo RelLU foi
acompanhado de uma queda no desempenho em todos 0s casos, € 0 uso da sigmoide

apresentou melhora apenas com o otimizador SGD.

Apresentando grande melhoria nesta etapa, foi o uso da funcdo tangente
hiperbdlica que apesar do decréscimo no R2 de treino foi acompanhado de um acréscimo
no R2 de teste, sendo este aumento mais pronunciado no caso do otimizador SGD (-0,3193
para 0,1051). O valor de R2? de teste neste caso, dobrou para o otimizador Adam e

permaneceu praticamente constante para o RMSprop.

Como os resultados obtidos para combinacdes foram baixos, verificou-se a hipétese
de sobre ajuste da rede com funcdo de saida linear. Os gréaficos foram feitos com 800

épocas de treinamento, visando permitir uma melhor visualizacéo de todo o treinamento.

Colocou-se entdo em um grafico a curva do erro médio quadrado da fungdo RelLU

e os otimizadores utilizados. O resultado é exibido na Figura 17.
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Figura 17 — Erro médio quadrado vs épocas para funcdo de ativacdo RelLU com diversos
otimizadores

Erro médio quadrado vs épocas com fungdo RelU e diferentes otimizadores
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Fonte: Préprio Autor

Percebe-se pela andlise da Figura 17, que quando do treino da rede com a funcéo
RelLU o erro médio quadrado decresce muito lentamente, independente do otimizador, o
gue significa que a rede lentamente vai se adaptando cada vez melhor ao conjunto de
dados de treino, ao passo que o erro médio quadrado do conjunto de teste cresce devido

a esse mesmo ajuste mencionado.

Neste caso, uma parada precoce do treinamento ndo solucionaria o problema, visto

gue o erro médio ndo decresce de forma consistente em nenhuma etapa do treinamento.

O desempenho da funcdo RelLU nessas condicdes pode ser explicada pelo fato de
gue quando esse tipo de funcdo € aplicada em redes neurais de poucas camadas,
denominadas redes rasas, um ndimero maior de neurdnios é necessario para que a rede
consiga encontrar minimos mais precisos da funcéo erro (ECKLE; SCHMIDT-HIEBER,
2019).

A mesma curva exibida para a funcdo de ativacdo RelLU foi feita para as outras
duas funcdes de ativacdo sigmoide e tangente hiperbodlica nas Figura 18 e Figura 19,

respectivamente.
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Figura 18 — Erro médio quadrado vs épocas para funcédo de ativacdo sigmoide com diversos
otimizadores

Erro médio quadrado vs épocas com fungao Sigmoide e diferentes otimizadores
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Fonte: Préprio Autor

Figura 19 — Erro médio quadrado vs épocas para funcao de ativacao tanh com diversos otimizadores

Erro médio quadrado vs épocas com fungio tangente hiperbdlica e diferentes otimizadores
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Fonte: Préprio Autor

Analisando a Figura 18, percebe-se que antes das 200 épocas as funcbes sigmoide
e tangente hiperbdlica, independente do otimizador, haviam atingido um erro minimo
guadrado e esse aumentou novamente até que o treinamento terminasse. O mesmo

comportamento é evidenciado nas Figura 19. Esse comportamento é caracteristico de
processos de sobre ajuste.

A mesma analise da hipétese de sobre ajuste foi conduzida para as redes onde a
funcdo de saida foi variada. Alguns casos mais pronunciados para cada par fung¢éo de

ativacdo na camada oculta e de saida sdo mostrados nas figuras abaixo.
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Figura 20 — Erro médio quadrado vs épocas para funcdo de ativacdo ReLU na camada oculta e
sigmoide na saida com diversos otimizadores

Erro médio quadrado vs épocas com funcéo ReLU/Sigmoide e diferentes otimizadores

121 | — 5GD Teste . —— RMSprop Teste — Adam Teste
SGD Treino 12 RMSprop Treino 12 Adam Treino
11 |I 11 1.1
‘|‘ |
10 .\\'. 10 | f}_,hﬂ,__,__,_.___‘__m/ 1.0
\ e o~ |
- —_— |
0.8 \ / — 09 | ~
y ol -
0.8 0.8
0.8
0.7 0.7
o7
o 200 400 600 8OO o 200 400 G600 8oo o 200 400 600 800

Fonte: Préprio Autor

Analisando-se a Figura 20 em conjunto com os dados da Tabela 2, nota-se que no
caso da rede com o par de funcbes ReLU — sigmoide a rede exibe sinais de sobre ajuste
para todos os otimizadores, exceto o SGD, sendo a forma menos pronunciada quando do

uso do otimizador Adam.

Entretanto, como evidenciado na Tabela 2, ainda que a rede sofra tal processo,
seus baixos valores de R2 as colocam também na condicdo de ou ndo ter complexidade
suficiente para capturar as relacdes nos dados ou nao ser a funcéo que melhor representa
a funcéo verdadeira.

Figura 21 — Erro médio quadrado vs épocas para funcdo de ativagédo sigmoide na camada oculta e
ReLU na saida com diversos otimizadores

Erro médio quadrado vs épocas com funcdo Sigmoide/RelU e diferentes otimizadores
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Fonte: Préprio Autor

Analisando a Figura 21, nota-se que quando a sigmoide é usada em conjunto com
a ReLU, arede exibe sinais de sobre ajuste leve para o otimizador RMSprop e mais intenso
para o Adam. Ja com o otimizador SGD nota-se uma queda consistente e lenta do erro
médio dos dados de teste, ainda que de forma muito ruidosa, dificultando assim determinar

um ponto 6timo de parada do treinamento.
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Essa diferenca no nimero de épocas necessarias para determinacdo do minimo
guando comparado o otimizador SGD com o0 RMSprop e o Adam pode ser explicado pela
diferenca no valor da taxa de aprendizado. Estes possuem uma taxa de aprendizado que
€ atualizada a cada época de treinamento, enquanto que naquela a é fixa ao longo de todo
o treinamento, refletindo entdo no nimero de épocas necessario para convergéncia
(RUDER, 20186).

Figura 22 — Erro médio quadrado vs épocas para funcao de ativagéo tangente hiperbélica na camada
oculta e na saida com diversos otimizadores

Erro médio quadrado vs épocas com fungao Tanh/Tanh e diferentes otimizadores
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Fonte: Préprio Autor

Pela Figura 22 percebe-se que em todos um casos um numero alto de épocas
causa um sobre ajuste da rede aos dados quando do treinamento da rede com func¢éo de
ativacao tangente hiperbodlica na camada oculta e na de saida, e que o minimo local no
conjunto de teste € encontrado rapidamente para entdo subir de forma consistente até o

final do treinamento.

Tendo confirmado entdo a hipétese de sobre ajuste da rede aos dados de treino,
modelou-se a rede com um mecanismo denominado Early Stopping. Tal mecanismo
interrompe o processo de treinamento da rede quando uma métrica de interesse deixa de
seguir um comportamento desejado. Em modelos preditivos, utilizam-se métricas como
erro quadrado médio (PRECHELT, 2012).

Nos resultados daqui para frente utilizou-se entdo o erro quadrado médio como
métrica para determinar quando o treinamento deveria ser interrompido. O critério de

parada foi um aumento por 10 épocas consecutivas do erro nos dados de teste.

Além disso, dada a baixa performance da rede, mesmo em casos onde 0 sobre
ajuste foi pequeno estudou-se também o efeito do aumento do nimero de neurdnios da
camada oculta sobre 0 R2 de treino e teste. O nimero de neurdnios foi variado no intervalo
[5,25].
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Os resultados obtidos para redes que foram modeladas com a fungéo de ativagéo
RelLU na camada oculta sdo exibidos na Tabela 5.

Tabela 5 — R2 de treino e teste com funcdo tangente ReLU na camada oculta e variando funcéo de
saida, otimizador e neurbnios

Funcéo Otimizador Epocas # neurdnios R2 treino R2 teste
Adam 44 5 0,4205 0,0747

Linear RMSprop 16 5 0,3548 0,1499
SGD 37 12 0,4775 -0,2819

Adam 27 5 0,2829 -0,0045

RelLU RMSprop 28 16 0,2169 0,0454
SGD 11 20 0,2969 -0,0551

Adam 103 7 0,2758 0,0795

Sigmoide RMSprop 73 9 0,2158 0,0606
SGD 96 24 0,2130 0,0369

Adam 31 7 0,3809 0,1294

If"‘”ge?t.e RMSprop 54 6 0,3430 0,1694

iperbdlica

SGD 31 7 0,3972 0,1178

Fonte: Préprio Autor

Analisando os valores da tabela acima com os obtidos anteriormente para redes
gue tinham a funcéo ReLU na camada oculta (Figura 16 e Tabela 2), nota-se que em todos

0s casos foram obtidos desempenhos superiores aos anteriores.

Quando a funcéo da camada de saida foi ou a ReLU ou a sigmoide, nota-se que
um aumento significativo da complexidade da rede foi necessario para que desempenho

maiores fossem obtidos.

De destaque, nota-se a um ganho de mais de dez vezes quando a rede foi
modelada com a tangente hiperbélica na saida sem um ganho excessivo na complexidade
da rede, indicando assim que nesta estrutura o Early Stopping teve um efeito positivo

pronunciado na capacidade de generalizagéo da rede.

Os resultados obtidos quando para a rede modelada com fun¢éo de ativagdo da

camada oculta como sigmoide sdo exibidos na Tabela 6.
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Tabela 6 — R2 de treino e teste com fungdo sigmoide na camada oculta e variando fun¢ao de saida,

otimizador e neurdnios

Funcéo Otimizador Epocas # neurdnios R2 treino R2 teste
Adam 63 10 0,3378 0,2898

Linear RMSprop 79 7 0,2981 0,2838
SGD 73 5 0,3745 0,2628

Adam 54 25 0,2229 0,0862

RelLU RMSprop 23 23 0,1556 0,0556
SGD 55 6 0,2279 0,0551

Adam 142 22 0,2259 0,0952

Sigmoide RMSprop 129 25 0,1542 0,0481
SGD 161 5 0,1595 0,0560

Adam 67 12 0,3266 0,2986

Ef"‘”gef‘t.e RMSprop 63 15 0,3015 0,2857

iperbdlica

SGD 51 11 0,3280 0,2908

Fonte: Préprio Autor

Comparando-se agora os valores da tabela acima com os da Figura 16 e da Tabela

3, nota-se que quando a funcéo de saida utilizada foi a linear ou a tangente hiperbdlica um

desempenho muito maior em relacdo ao R2 de teste foi obtido.

Ja quando as funcdes de saida foram a ReLU e a prépria sigmoide, nota-se um

ganho grande na complexidade da rede sem um ganho no desempenho no conjunto de

teste que justifique o ganho de complexidade.

Os resultados obtidos quando para a rede modelada com funcéo de ativacdo da

camada oculta como tangente hiperbélica sdo exibidos na Tabela 7.
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Tabela 7 — R2 de treino e teste com fun¢éo tangente hiperbdlica na camada oculta e variando fungéo
de saida, otimizador e neurbnios

Funcéo Otimizador Epocas # neurdnios R2 treino R2 teste
Adam 38 5 0,3833 0,2672

Linear RMSprop 38 5 0,3314 0,2616
SGD 26 17 0,3985 0,2286

Adam 68 8 0,2896 0,0970

RelLU RMSprop 58 17 0,2403 0,0854
SGD 30 8 0,3180 -0,0033

Adam 90 5 0,2518 0,1025

Sigmoide RMSprop 71 5 0,2160 0,0524
SGD 67 19 0,2330 0,0915

Adam 36 5 0,3372 0,2879

Ef"‘”gef‘t.e RMSprop 41 5 0,3186 0,2726

iperbdlica

SGD 20 24 0,3383 0,2583

Fonte: Préprio Autor

Por altimo, analisando-se os dados acima com os da Figura 16 e Tabela 4, percebe-
se que os dados se comportaram de forma analoga aos das duas tabelas anteriores, onde
ganhos mais pronunciados foram exibidos quando a fun¢éo de saida da rede foi a linear

ou tangente hiperbdlica, com ganhos de complexidade variavel.

Essa diferenca quando do uso das funcbes de saida pode ser explicada pelo fato
de que a funcéo sigmoide e a funcdo RelLU possuem caracteristicas que dificultam o

processo de treinamento.

A funcéo sigmoide possui um intervalo de saida pequeno e comprime os resultados
de sua derivada em um espac¢o muito curto do eixo x, fazendo com que o gradiente
facilmente atinja zero no momento do treinamento, o que impede um treinamento maior da
rede. A funcdo tangente hiperbdlica por sua vez, possui um intervalo de saida maior e um

gradiente menos concentrado.

Jé a funcéo RelLU, apesar de muito semelhante com a linear no intervalo positivos
das abscissas, sofre do problema de gradientes iguais a zero quando a entrada é negativa,

dificultando assim o refinamento dos pesos e bias da rede.

Percebe-se entdo que a fungcdo de saida da rede tem influéncia significativa no
desempenho da rede neural, sendo as fungdes lineares e tangente hiperbdlica, neste caso,

as que favorecem resultados maiores.
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Apesar de as redes com a funcao tangente hiperbdlica na saida terem obtido um
bom desempenho quando comparadas as com outras funcbes de ativacgéo, tais redes
estariam com uma restricdo quando utilizadas na predicdo devido ao fato de os valores
estarem normalizados em valores z e a tangente hiperbdlica ter sua saida no intervalo [-
1,1].

Logo, os estudos feitos com funcdes de ativacdo que ndo a linear na camada de
saida foram realizadas com o intuito de analisar diferentes estruturas da rede, mas nao

possuem efeito pratico nesse trabalho e seréo portanto descartadas deste ponto em diante.

Tendo-se entdo aplicado o mecanismo de Early Stopping para diminuir a
intensidade de sobre ajuste da rede aos dados, verificou-se o efeito da diminuicédo da taxa
de aprendizado da rede, uma vez que o mecanismo citado opera em cima da funcéo erro

da rede que por sua vez depende da taxa de aprendizado da mesma.

Verificou-se entdo o efeito de quatro valores da taxa de aprendizado: 0,0001, 0,001,
0,01, 0,1. Os resultados foram compilados como a média para as trés fun¢des de ativacao

pelo fato de terem exibido curvas muito semelhantes e sé@o exibidos nas Figura 23.

Figura 23 — R2 de teste vs taxa de aprendizado para diferentes otimizadores

R? de teste vs taxa de aprendizado
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Fonte: Préprio Autor

Pela figura acima percebe-se que com o Adam e o RMSprop obteve-se um
desempenho inferior no R? de teste quando se aumentou a taxa de aprendizado do
otimizador, sendo essa queda pronunciada quando se elevou a taxa de aprendizado de

0,01 para 0,1. Essa degradacado pode ser explicada pelo fato de que quando tal parametro
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€ muito alto, o otimizador atualiza os pesos tdo grandemente que pontos de minimo da

funcéo erro ndo sdo detectados em proximos processos de atualizacao.

Nota-se também que o otimizador SGD exibe uma curva diferente dos outros nos
trés primeiros pontos analisados, ou seja, ele apresenta uma melhora no R2 de teste com
0 aumento da taxa de aprendizado nesse intervalo. Isso pode ser explicado pelo fato de
que o SGD, quando utilizado com taxas de aprendizado muito baixas movimenta-se muito

lentamente em dire¢cdo ao minimo da fun¢éo erro (RUDER, 2016).

Além disso o SGD é conhecido por uma curva de erro muito ruidosa devido a
atualizacdo a cada amostra apresentada ao modelo, isso aliado a uma baixa taxa de
aprendizado e ao mecanismo de Early Stopping pode ter causado uma parada precoce do

algoritmo.

Dado o baixo desempenho geral da rede, variou-se também o método de estimacao
inicial da matriz de pesos e bias. Foram testados os métodos com extracao da distribuicéo
normal com média 0 e desvio padréo 0,05 e da distribuicdo uniforme no intervalo [-0,05;

0,05]. Os resultados sao exibidos na Tabela 8.

Tabela 8 — R2 de teste para diversos otimizadores variando-se o iniciador de parametros

Otimizador
Funcéo Iniciador Adam RMSprop SGD
RelLU Uniforme 0,0799 0,1592 0,0032
RelLU Normal 0,1219 0,1259 -0,0726
Sigmoide Uniforme 0,1003 0,1114 -0,0065
Sigmoide Normal 0,0708 0,1131 -0,0739
Tanh Uniforme 0,1854 0,1863 0,1164
Tanh Normal 0,1890 0,1788 0,1882

Fonte: Préprio Autor

Percebe-se que o0 modo com que a matriz de parametros da rede € iniciada
influencia de forma significativa como o algoritmo SGD desempenhou e em menor grau 0s

outros dois otimizadores.

A funcdo ReLU e a funcé@o sigmoide exibiram melhor desempenho quando os
parametros foram iniciados através da extracéo de valores da distribuicdo uniforme, ja para
a funcéo tangente hiperbdlica, o0 modo de inicializacdo dos parametros ndo afetou o

desempenho.
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Buscando entdo a melhor combinacdo dos parametros variou-se o nimero de
neurdnios na camada oculta entre 5 e 25 com incrementos de 5, as taxas de aprendizado
e iniciadores demonstrados visando encontrar o melhor conjunto de parametros. Os cinco
melhores modelos séo exibidos na Tabela 9.

Tabela 9 — R2 de treino e teste variando-se a fungéo de ativacdo, otimizador, neurdnios, taxa de
aprendizado e iniciador

Funcgdo | Otimizador | Epocas | Neurdnios ap:-g:gi(zjaedo Iniciador trsi;o teRsie
RelLU SGD 44 25 0,01 Normal  0,6800 0,2659
Tanh Adam 29 15 0,01 Uniforme  0,4123 0,2453
Tanh RMSprop 30 15 0,01 Normal  0,3609 0,2431
Tanh RMSprop 30 10 0,01 Normal  0,3640 0,2318
RelLU Adam 30 25 0,0001 Uniforme  0,4680 0,2281

Fonte: Préprio Autor

O melhor R2 de teste obtido foi de 0,2659 para a funcdo ReLU com o otimizador
SGD com taxa de aprendizado de 0,01 e iniciador normal e 25 neurbnios. Nota-se, no
entanto, que o segundo e terceiro modelos obtiveram performance analoga ao melhor e
sem um numero excessivo de neurbnios, o que pode ser uma dificuldade no processo de

convergéncia devido ao pouco nimero de amostras disponiveis para treinamento.

Como baixos valores de R2 de teste foram obtidos, argumentou-se que a rede ndo
era dotada de complexidade suficiente para captar a funcao que verdadeiramente regia os

dados.

Tendo em vista que os melhores resultados foram obtidos para redes com fungbes
de ativagdo na primeira camada como sendo a ReLU ou a tangente hiperbdlica e de que a
inicializacdo de pesos para estas func¢des foi melhor quando se usou o0 método de extragao
da normal, seguiu-se com uma modelagem da rede com duas camadas dotada das
caracteristicas mencionadas. Os cinco melhores modelos obtidos s&o exibidos na Tabela
10.
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gg;ga%(; ggr?a?:l% Neuronios Neuronios Otimizador | Epocas | R2teste
1 > Camada 1 Camada 2

Tanh RelLU 8 8 Adam 45 0,3034

Tanh RelLU 7 13 Adam 55 0,2898

Tanh Tanh 20 25 Adam 56 0,2867

Tanh RelLU 10 8 RMSprop 57 0,2861

Tanh RelLU 8 9 Adam 48 0,2860

Fonte: Préprio Autor

Nota-se que uma melhoria de cerca de 14% comparando os melhores modelos foi
observada quando se modelou a rede com duas camadas. No entanto, esse incremento
no R? de teste é pequeno quando comparado com o ganho de complexidade no
treinamento da rede, tendo em vista que quanto mais parametros a serem determinados,

mais amostras sao necessarias para um processo de treinamento completo.

Pelo motivo acima néo foi considerado um aumento no numero de camadas da rede
e parou-se aqui o crescimento da rede. O melhor modelo obtido entdo foi 0 com a tangente
hiperbdlica na primeira camada de 8 neurbnios, ReLU na segunda camada de 8 neurdnios,

otimizador Adam com um R2 de treino de 0,3918 e de teste de 0,3034.

Comparou-se entdo o desempenho da rede neural com a regresséo linear, sendo

gue o método de selecdo das variaveis para o0 modelo linear foi 0 método Stepwise.

Na modelagem da regresséo linear considerou-se uma abordagem na qual a média
dos valores das variaveis preditoras por varidvel dependente era utilizada aos invés das 10

leituras recomendadas pelo fabricante do nariz eletrénico.

Os resultados obtidos para a rede neural e para a regressao linear sdo exibidos nas
Figuras 24 e 25.
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Figura 24 — R? de treino e teste para a rede neural final
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Fonte: Préprio Autor

Figura 25 — Acidez estimada vs Acidez real para a regresséo linear multivariada

Acidez estimada vs Acidez real para regressio linear
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Fonte: Préprio Autor

Para a regresséo linear os R2 obtidos foram de 0,9664 e 0,915 para 0s conjuntos
de treino e validagéo, respectivamente, utilizando-se as variaveis independentes M2, P6

K19 e intercepto. Neste caso M é calculado como A + B*K.

Nota-se entdo que a regressao linear obteve um desempenho muito superior ao da
rede neural obtida. Essa diferenga na performance pode ser explicada pela dificuldade de
obter-se boas estimativas dos coeficientes da rede neural visto o grande nimero de

parametros a serem treinados versus o nimero de amostras disponiveis para tal.

O numero de amostras disponiveis para treino de uma rede neural entdo impde-se
como um problema na aplicacdo do trabalho em questdo, visto que o numero de

parametros treindveis era muito superior ao de amostras. Na rede elaborada, por exemplo,
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tem-se 40, 64 e 8 elementos pesos na primeira camada oculta, segunda camada oculta e
camada de saida, mais 8, 8 e 5 elementos bias.

Logo, ainda que a rede tivesse obtido um desempenho minimante satisfatorio, tal
valor deveria ser contestado ainda assim, visto que o numero de graus de liberdade seria
negativo, o que acarretaria em problemas quanto a confiabilidade do uso do modelo em

novas amostras.

O numero de graus liberdade fornece informacdo acerca da confianca na
variabilidade dos parametros estimados de um dado modelo. E comumente definido como
a diferenca entre 0 numero de amostras disponiveis menos o nimero de parametros ou
numero de relacbes necessdarias para obtencdo de tais parametros de um modelo de
escolha (ZOURNAZI, 2017).
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5 CONCLUSAO

Nesse trabalho verificou-se a capacidade de redes neurais em estimar a acidez de
Oleos vegetais tendo como variavel independente os parametros do algoritmo estocastico
desenvolvido por SIQUEIRA et al., (2018) para modelagem do sinal lido por um nariz

eletrbnico.

Os resultados obtidos indicam que as redes neurais ndo sdo uma boa escolha de
algoritmo para este objetivo, o que pode ser atribuido ao baixo nimero de amostras

disponiveis para treinamento.

Quanto a isso, dois pontos sédo de ressalva: a importancia de um nimero razoavel
de amostras para treinamento adequado da rede de forma a obter uma melhor estimativa
dos coeficientes das matrizes de peso e bias; um numero razoavel de graus de liberdade
de uma rede neural com bom desempenho tendo em vista que 0 nimero de parametros

treinaveis de uma rede cresce muito rapidamente.

Deve-se entdo atentar a esses dois fatores quando da escolha de uma rede neural
como modelo para determinada tarefa, especialmente dado o teorema de Kolmogorov
(KURKOVA, 1992) que diz que uma rede neural de duas camadas ocultas e nimero

adequado de neurdnios consegue aproximar qualquer funcéo continua.

Outro fator que pode ter contribuido para um baixo desempenho da rede foi a
escolha das variaveis independentes. Outros métodos de escolha de variaveis como o de
importancia da variavel FISHER; RUDIN; DOMINICI (2018), no entanto, ndo foram

considerados neste trabalho.

Tem-se como hipétese também a falta de complexidade da rede, no entanto, devido
a baixa quantidade de amostras para treino, um ganho progressivo da complexidade dos

modelos nao foi possivel.

Algoritmos que necessitam de um menor nimero de amostras para estimagéo dos
parametros, como a regresséo linear, exibiram desempenho muito superior ao da rede,
podendo essa grande diferenca de desempenho ser explicada pela melhor determinacéo
da regressdo de seus parametros mesmo com uma baixa quantidade de amostras

disponiveis.
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