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RESUMO 

ABREU, L. S. Estimação da acidez de óleos vegetais via nariz eletrônico através de 

uma rede neural feed-forward.2019. Trabalho de Conclusão de Curso – Escola de 

Engenharia de Lorena, Universidade de São Paulo, Lorena, 2019. 

 

A modelagem estatística tem sido de grande valia nos mais variados campos de 

conhecimento, como análise de fraudes, métodos de classificação e mais recentemente 

aplicações como identificação de imagens. Em tais aplicações, um modelo que tem 

ganhado bastante atenção nos últimos tempos são as redes neurais artificias. As redes 

neurais têm sido utilizadas como sistemas de classificação em narizes eletrônicos para 

identificação das substâncias analisadas com o nariz. 

O presente trabalho propôs-se a modelar os dados coletados com auxílio de um nariz 

eletrônico utilizando uma rede neural do tipo feed-forward para estimação da acidez de 

óleos vegetais. A pequena quantidade de amostras presentes disponíveis para treino foi 

uma dificuldade encontrada no processo de treinamento da rede de forma que este obteve 

um coeficiente de correlação linear no conjunto de validação máximo de 0,28. 

Uma regressão linear multivariada foi desenvolvida de modo a permitir uma comparação 

de desempenhos. A regressão obteve na tarefa em questão valores superiores ao da rede 

neural: 0,9664 de coeficiente de correlação linear no conjunto de treino e 0,9150 no de 

teste. 

 

Palavras-chave: Redes neurais. Estimação de propriedades físico-químicas. Modelagem 

estatística. Nariz eletrônico. 

  



 

ABSTRACT 

ABREU, L. S. Estimation of vegetable oils’ acidity with a electronic nose through a 

feed-forward neural network.2019. Trabalho de Conclusão de Curso – Escola de 

Engenharia de Lorena, Universidade de São Paulo, Lorena, 2019. 

 

Statistical modelling has been of great value in several knowledge fields, such as fraud 

analysis, clustering methods and lately on identification of images. In those applications, a 

model that has been given special attention lately are artificial neural networks. They have 

been applied as classifications systems in electronic noses for compound identification.  

The current work aimed at modelling a feed-forward neural network using data read by an 

electronic nose for estimation of vegetable oil’s acidity. The small number of samples 

available proposed itself as a challenge during the training of the network resulting in a 

linear correlation coefficient in the validation set of 0,28. 

A multivariate regression line was developed in order to establish a comparison between 

the model’s performance. The regression line performance was much better than the neural 

network one, achieving the value of 0,9664 for the linear correlation coefficient in the training 

set and 0,9150 in the validation set. 

 

 

Keywords: Artificial Neural Networks. Estimation of physico-chemical properties. Statistical 

modelling. Electronic Nose. 
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1 INTRODUÇÃO 

1.1 CONTEXTUALIZAÇÃO  

A partir do advento das máquinas e de suas aplicações em tarefas onde seguia-se 

uma linha de execução sequencial e em ambientes conhecidos, o homem começou a 

imaginar a criação de máquinas autônomas que pudessem operar também em ambientes 

desconhecidos. 

Logo, a criação de máquinas autônomas traria então os benefícios das máquinas, 

como precisão numérica e velocidade de execução, para junto de características de 

processamento do cérebro humano. Características como interpolação, paralelismo, 

generalizações, tolerância a erros e o mais desejado, a capacidade de aprendizado, o que 

possibilitaria às máquinas a aprendizagem contínua mesmo em ambientes totalmente 

novos (MAO, 1996). 

Esses ambientes novos exigiriam das máquinas uma elasticidade no 

processamento da informação que tornaria o processo, assim como no cérebro, não 

sequencial a fim de conseguir compreender o novo meio e conseguir atuar de formar 

consistente. Nesse sentido os modelos de redes neurais artificiais aplicam uma estrutura 

análoga à usada no funcionamento do cérebro (MAO, 1996), tendo-se então como 

componente básico de uma rede neural artificial o neurônio, que se dispõe em camadas 

interligadas sucessivamente, estando cada neurônio conectado com pelo menos outro 

neurônio da rede. 

De acordo com SVOZIL; KVASNICKA; POSPÍCHAL (1997) o funcionamento básico 

de uma rede neural se dá da seguinte forma: 

1. Recebimento por um neurônio de dados de entrada, podendo esses dados serem 

variáveis de entrada da rede ou respostas emitidas por outros neurônios; 

2. Processamento dos dados, que consiste na multiplicação matricial dos dados de 

entrada com uma matriz de pesos e adição de um bias. Onde o valor de cada peso 

da matriz reflete a influência de cada dado na resposta emitida pelo neurônio e o 

bias pode ser interpretado como um segundo ajuste para um melhor resultado de 

saída; 

3. Aplicação do resultado obtido no passo 2 em uma função denominada função de 

ativação, o que confere às redes a capacidade de modelar processos não lineares; 

4. Disparo do resultado da função de ativação proveniente de um neurônio para 

outros neurônios da rede ou como variável de saída da rede neural. 
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E no que tange à forma como as redes refinam seus algoritmos, de forma a 

aumentarem sua precisão, tem-se três grupos: treinamento supervisionado, treinamento 

não supervisionado e treinamento por reforço. O treinamento supervisionado se dá através 

da comparação do valor de saída da rede para um dado conjunto de dados com o valor 

real. 

No treinamento supervisionado a rede realiza cálculos para reduzir a diferença entre 

o valor de saída da rede e o valor real para o valor mais próximo possível de zero. Já nos 

outros dois modelos, respectivamente, a aprendizagem se dá através da detecção de 

padrões nos dados de entrada e através de estímulos a rede dependendo da resposta que 

ela obtém para um conjunto de dados (PRIETO et al., 2016). 

Segundo CROSS; HARRISON; KENNEDY (1995) ao contrário dos computadores 

convencionais, as redes neurais artificiais têm seu poder computacional proveniente da 

densidade e da complexidade das conexões entre as camadas de neurônios, ao ponto de 

que uma rede neural artificial com pelo menos uma camada aproxima de forma satisfatória 

qualquer outro modelo (DEBAO, 1993), isto é, modelos que fazem aproximações de 

funções, classificadores de padrões e clusterizadores, que é o agrupamento de dados 

(GORGENS et al., 2009). 

Como reportado por PRIETO et al. (2016), as redes neurais possuem aplicações 

nos mais variados campos, como por exemplo: 

• Na medicina através da classificação de imagens biomédicas; 

• Na química com a modelagem de processos na área de química analítica; 

• Na genética com a modelagem de genomas, como da Drosophila Melanogaster; 

• Na meteorologia com a predição do clima e classificação de nuvens. 

Focando no âmbito das engenharias, temos na engenharia ambiental a 

determinação da qualidade de águas potáveis (SALARI et al., 2018) e na engenharia 

química na análise de falhas em processos químicos como nos trabalhos de WU e ZHAO 

(2018) e também no trabalho de ZHANG e ZHAO (2017). 

Ainda no âmbito da engenharia química, uma aplicação das redes neurais seria a 

identificação de propriedades de substâncias químicas, puras ou não, baseadas em um 

conjunto de dados de entrada que é utilizado para treinamento da rede neural. Nesse caso, 

o conjunto de dados é obtido a partir de leituras de um nariz eletrônico através da 

passagem de vapores da substância sob análise pelo equipamento.  

O primeiro esboço de um nariz eletrônico foi com Persaud & Dood em 1982 como 

sendo um sistema que pudesse realizar leituras de amostras e então identificar a 
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substância em questão de forma mais rápida do que por métodos usuais (MAJCHRZAK et 

al., 2018). 

Segundo GHASEMI-VARNAMKHASTI et al. (2018), o nariz eletrônico tem uma 

estrutura próxima da do nariz humano compreendendo assim uma sequência de sensores 

com especificidades parciais a alguns compostos e um sistema de detecção apto a 

identificar desde odores simples até mais complexos. 

O funcionamento se dá pela passagem dos aromas pela sequência de sensores de 

forma a gerar um sinal elétrico associado à substância de análise. Esse sinal elétrico 

depende da variação da resistência elétrica dos sensores quando uma molécula adsorve 

nos sensores. Uma vez gerado o sinal, ele é lido por um software, pré tratado, visando 

eliminar ruídos e usado como entrada em um software de reconhecimento que tem como 

função identificar a substância que está sob análise (GHASEMI-VARNAMKHASTI et al., 

2018).  

1.2 JUSTIFICATIVA 

Um dos problemas enfrentados por modelos utilizando nariz eletrônico é a perda de 

validade do modelo quando se utiliza um volume grande de amostras para validação devido 

ao excesso de ruído gerado por algumas substâncias. Uma solução foi obtida por 

SIQUEIRA et al. (2018) que fez uso do ruído gerado pelas leituras como variável de entrada 

no modelo por ele descrito. 

O nariz eletrônico apresenta-se especialmente útil na aferição da qualidade de 

odores quaisquer emitidos por períodos prolongados, tanto porque a exposição repetida a 

odores tende a enviesar avaliações humanas sobre a qualidade do odor emitido, quanto 

porque os odores podem ser tóxicos (LISBOA; PAGÉ; GUY, 2009). 

Dentre outras aplicações de destaque para o nariz eletrônico, segundo LISBOA; 

PAGÉ; GUY (2009), temos: 

• Aferição de níveis de glicose em pacientes diabéticos, entre outras patologias como 

a tuberculose; 

• Monitoramento de processos de cozimento; 

• Controle de qualidade de fermentados como queijos e cervejas; 

• Análises de água e esgoto. 

Tendo em vista as aplicações do nariz eletrônico apresentadas, uma outra possível 

aplicação, tendo em vista a solução e resultados obtidos por SIQUEIRA et al. (2018), é o 
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uso dos parâmetros de seu modelo em uma rede neural para estimação da acidez de óleos 

vegetais, o que possibilitaria análises mais rápidas em procedimentos rotineiros de 

laboratório, por exemplo. 

1.3 OBJETIVOS  

1.3.1 Objetivos gerais 

Desenvolver uma rede neural que receba os sinais lidos por um nariz eletrônico 

para estimação da acidez de óleos vegetais. 

1.3.2 Objetivos específicos 

O presente trabalho tem como objetivo a estimação da acidez de óleos vegetais 

através de uma rede neural feed-forward treinada utilizando o algoritmo de 

backpropagation e dados obtidos através de leituras realizadas com um nariz eletrônico. 
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2 REVISÃO DA LITERATURA 

2.1 REDES NEURAIS 

2.1.1 Histórico 

O desenvolvimento das redes neurais pode ser dividido historicamente em quatro 

maiores momentos (PRIETO et al., 2016): 

1. Entre 1940 e 1950 com McCulloch e Pits, que propuseram o primeiro modelo formal 

de um neurônio. Esse modelo considerava a existência do neurônio e de sua 

memória associativa, pensada justamente no modelo dos neurônios e suas 

interações entre si.  

Algumas descobertas à época sobre as redes neurais biológicas influenciaram 

grandemente no desenvolvimento das redes, como a ideia proposta por Hodgkin e 

Hulexy e pelo psicólogo Hebb. Hodgkin e Hulexy propuseram equações sinápticas 

em 1942 e em 1949, segundo Hebb, os neurônios guardavam informações de suas 

sinapses e faziam uso delas para novos aprendizados; 

2. Entre 1960 e 1970 com o desenvolvimento dos algoritmos de aprendizagem tanto 

para redes de uma única camada como para redes recorrentes. Dentre os métodos, 

temos o método dos mínimos quadrados, implementação de memórias 

associativas, entre outros.  

Minsky e Paper, em 1967, publicaram um livro no qual afirmavam que algumas 

tarefas exigiriam interconexão entre os neurônios. Essa interconexão, na época,  

era ainda impossível devido à falta de equações que se adequassem a esse 

modelo, fazendo com que o estudo de redes neurais estagnasse durante alguns 

anos; 

3. Entre 1980 e 1990 com um ressurgimento do interesse pelas aplicações com redes 

neurais, estudos mais focados sobre a auto-organização das redes e expansão 

para redes com mais de duas camadas ocultas foram desenvolvidos. Também 

caracterizado pela aplicação de métodos Bayesianos e Gaussianos às redes 

neurais, o que trouxe a aprendizagem de máquinas mais próxima da teoria de 

probabilidade. 

Uma série de topologias e técnicas novas foram descobertas no período, como por 

exemplo:  

• modelos do tipo self-organizing maps (SOM), que buscam padrões mais 

implícitos em conjuntos de dados; 
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• indepedent component analysis (ICA), que foi inicialmente aplicado no 

problema da separação cega de fontes em 1985 por Herault, Jutten e Anns; 

• o algoritmo de back-propagation, que sanava os problemas citados por 

Minsky e Paper em 1967. 

A aplicação dos métodos Bayesianos e Gaussianos nos modelos de redes neurais 

vigentes à época trouxe esse campo mais próximo à teoria de probabilidade 

culminando com a criação de um campo denominado Statistical Machine Learning;  

4. De 2000 até o presente com a tentativa de melhorar a performance dos modelos 

através de técnicas mais avançadas de otimização. 

Modelos que ganharam uma maior atenção no período foram as Complex-Valued 

Networks (CVNN) e as Deep Neural Networks (DNN). CVNNs são redes neurais 

nas quais qualquer variável pode assumir valores complexos, sendo especialmente 

útil em modelagens que envolvam ondas eletromagnéticas. 

As DNNs são compostas de camadas ocultas dispostas em série, aumentando a 

capacidade de processamento da rede neural, sendo útil especialmente em tarefas 

mais complexas como processamento de linguagem natural e visão computacional. 

Porém um limitante no uso de DNNs é o alto custo computacional necessário para 

treinamento e teste, de forma que métodos para amenizar esse custo tem sido alvo 

de bastante interesse. 

Em 2002, Maass apresentou o conceito de Liquid state machine (LSM), que sanava 

o problema de processamento em tempo real de variáveis. Nesse modelo, o neurônio 

recebe uma série de dados de entrada conseguindo transformar um estado transiente em 

uma resposta estável através do aprendizado da noção de igualdade por cada neurônio. 

Aplicações de LSMs resultaram em modelagens ainda mais próximas do real 

funcionamento de sistemas biológicos, a saber as sinapses. 

Um dos tópicos de maior interesse da quarta fase foi o melhor dimensionamento do 

tamanho da rede de forma a obter o melhor desempenho com o menor custo 

computacional.  

2.1.2 Estrutura de redes neurais do tipo feed-forward 

O componente básico de uma rede neural é conhecido como neurônio. Cada 

neurônio recebe variáveis de entrada, processa-as e emite uma resposta de saída. Em 

uma rede neural, cada neurônio está conectado com pelo menos um outro neurônio da 

rede de forma que a resposta de saída de um neurônio é comumente utilizada como 

variável de entrada de outro. 
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Segundo BRAGA; CARVALHO; LUDERMIR (2000) definem-se três tipos de 

camada em uma estrutura de rede neural: a camada de entrada, a camada de saída e 

camadas que não a de entrada e a de saída, denominadas ocultas. A camada de entrada 

é responsável pelo envio sem quaisquer modificações dos sinais de entrada para a rede 

neural; a de saída pelo envio da(s) variável(is) resposta(s) da rede e as camadas ocultas 

pelo tratamento e envio dos sinais provenientes de camadas anteriores. O esquema de 

uma rede neural feed-forward pode ser encontrado na Figura 1. 

Figura 1 – Modelo de rede neural feed-forward 

 

Fonte: Adaptada de SVOZIL; KVASNICKA; POSPÍCHAL (1997) 

Segundo HAYKIN (2001), três componentes básicos encontrados em um neurônio 

são: 

1. Conjunto de pesos que faz menção ao peso de cada variável de entrada sobre a 

variável de saída. A notação de cada peso, 𝑤𝑘𝑗 , constitui-se de dois números 𝑘𝑗: 𝑘 

é o índice do neurônio na camada e 𝑗 a posição do neurônio na camada anterior; 

2. Um operador somador de todos sinais recebidos por cada neurônio; 

3. Uma função denominada função de ativação que permite que a rede modele 

problemas que não são linearmente separáveis. O aspecto mais importante que a 

função de ativação de escolha deve ter é que ela seja diferenciável. 

Uma outra notação utilizada para os pesos é a seguinte 𝑤𝑘𝑗
𝑙 , onde 𝑙 é o índice da 

camada na qual o neurônio está; 𝑘 é o índice do neurônio na camada 𝑙 + 1 e 𝑘 é o índice 

do neurônio na camada 𝑙 (SVOZIL; KVASNICKA; POSPÍCHAL, 1997). 
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Quatro funções de ativação conhecidas são (HAYKIN, 2001): 

• Função de limiar/Heaviside: foi a função das primeiras redes neurais apresentadas 

por McCulloch e Pitts (1943) e simboliza um modelo “tudo ou nada”. A 

representação gráfica da função de Heaviside pode ser vista na Figura 2, sendo 

matematicamente definida como: 

𝐻(𝑥) = {
0  𝑠𝑒 𝑥 < 0
1 𝑠𝑒 𝑥 > 0

     (1) 

Figura 2 – Função de Heaviside 

 

Fonte: SALIH (2015) 

• A função sigmoide: apresenta-se como uma função intermediária entre os modelos 

lineares e não lineares e com valores sempre positivos. A representação gráfica 

da função sigmoide pode ser vista na Figura 3, sendo matematicamente descrita 

como: 

σ(𝑥) =
1

1+𝑒−𝑥
     (2)  

Figura 3 – Função Sigmoide 

 

Fonte: Próprio Autor 
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• A função tangente hiperbólica (Tanh) preserva a forma da função sigmoide ao 

mesmo tempo que permite um intervalo de valores de saída maior. A 

representação gráfica da função se encontra na Figura 4: 

tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
     (3)                    

Figura 4 – Função tangente hiperbólica 

 

Fonte: Próprio Autor 

• A função ReLU (Rectified Linear Unit) é uma função que mapeia a identidade no 

intervalo positivo das abscissas e 0 no intervalo negativo: 

     𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)                         (4) 

Figura 5 – Função ReLU 

               

Fonte: Próprio Autor 

Tem-se também a adição de um termo b, conhecido como bias, que permite uma 

maior flexibilidade para o neurônio para o ajuste dos dados. Logo, um neurônio que recebe 
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uma entrada 𝑥𝑗 pode ser descrito, de acordo com HAYKIN (2001), de acordo com a 

Equação 5 e 6 abaixo, onde 𝑓(𝑢𝑘) simboliza uma função de ativação qualquer: 

𝑦𝑘̂ = 𝑓(𝑢𝑘)      (5)  

𝑢𝑘 = ∑ (𝑤𝑘𝑗 ∗ 𝑥𝑗 + 𝑏𝑘 )
𝑚
𝑗=1      (6) 

Na Figura 6 está o fluxograma de uma rede neural idealizado por McCulloch e Pitts, 

que foram os primeiros a idealizarem e projetarem as redes neurais. 

Figura 6 – Modelo de neurônio de McCulloch e Pitts 

 

Fonte: HAYKIN (2001) 

O processo de cálculo de uma rede neural inicia-se com as variáveis de entrada no 

começo da rede neural. Os cálculos da Equação 6 são feitos camada a camada, 

começando da esquerda e indo até a direita, neurônio a neurônio, até que os neurônios da 

última camada computem a saída da rede neural. Esse processo é conhecido como 

alimentação positiva ou feed-forward. 

2.1.3 Algoritmos de treinamento e métodos de otimização 

O treinamento das redes neurais pode ser dividido em duas categorias (BRAGA; 

CARVALHO; LUDERMIR, 2000): 

• Supervisionado: são modelos de rede neural nos quais a variável de saída para 

um determinado conjunto de dados de entrada é previamente fornecida; 

• Não supervisionado: modelos onde uma correlação entre os dados de entrada é 

buscada pela rede neural sem valores de saída previamente conhecidos. 

Após a realização dos cálculos de feed-forward pela rede neural parte-se para o 

processo de verificação da precisão da rede. A precisão obtida no primeiro cálculo da rede 
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neural é comumente baixa, fazendo-se necessário a modificação dos únicos parâmetros 

variáveis da rede: a matriz de pesos e os bias associados a cada neurônio. 

O procedimento mais comum utilizado nesse ajuste dos parâmetros da rede neural 

é o método de Backpropagation (BP). De acordo com BRAGA; CARVALHO; LUDERMIR 

(2000) o método de Backpropagation é uma generalização do método dos mínimos 

quadrados, fazendo neste caso uso do erro quadrado médio como indicador de 

performance. 

Esse método, sendo classificado como um método iterativo, utiliza os valores 

designados para as matrizes de pesos e de bias na iteração anterior para definir os novos 

valores desses parâmetros em uma próxima iteração. Esses novos valores são calculados 

de forma que os pesos e bias convirjam para pontos de mínimo da função erro (Equação 

7) (SVOZIL; KVASNICKA; POSPÍCHAL, 1997). 

𝐸 =
1

2
∗ (𝑦 − 𝑦̂)2     (7) 

Na Equação 7 o termo 𝑦 é o valor da variável de saída para um dado conjunto de 

dados de treino e 𝑦̂ é o valor predito pela rede para o mesmo conjunto de dados de treino.  

A busca do ponto de mínimo da função de erro é feita através de métodos de 

otimização que utilizam o vetor gradiente do erro da saída em função da matriz de pesos 

e bias da rede. Dentre os métodos de otimização, podemos citar o gradiente descendente 

e métodos mais recentes como o Adam e RPROP. 

As Equações 8 até 11 representam a dedução do algoritmo de Backpropagation 

fazendo uso do algoritmo de otimização do gradiente descendente. A notação das 

equações é (SVOZIL; KVASNICKA; POSPÍCHAL, 1997): 

• 𝑤𝑘𝑗
𝑖  representa o peso de uma conexão entre dois neurônios k e j;  

• α simboliza o parâmetro denominado taxa de aprendizado;  

• 𝐸 é a função erro médio quadrado;  

• 𝑏𝑘𝑗
𝑖  é o bias da camada oculta i;  

• 𝑦𝑘̂ é a variável de saída da rede neural (Equação 6); 

• 𝑢𝑘 é a somatória das entradas em um neurônio multiplicadas pelos respectivos 

pesos com o bias da camada k.  

𝑤𝑘𝑗
𝑖+1 =  𝑤𝑘𝑗

𝑖 −  𝛼 ∗ (
𝜕𝐸

𝜕𝑤𝑘𝑗
)

(𝑖)

    (8) 
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  𝑏𝑘
𝑖+1 =  𝑏𝑘

𝑖 −  𝛼 ∗ (
𝜕𝐸

𝜕𝑏𝑘
)(𝑖)

     (9) 

𝜕𝐸

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑦
𝑘̂

∗
𝜕𝑦

𝑘̂

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑦
𝑘̂

∗
𝜕𝑓(𝑢𝑘)

𝜕𝑤𝑘𝑗
 

 =
𝜕𝐸

𝜕𝑦
𝑘̂

∗
𝜕𝑓(𝑢𝑘)

𝜕𝑢𝑘
∗

𝜕𝑢𝑘

𝜕𝑤𝑘𝑗
 

                             =
𝜕𝐸

𝜕𝑦
𝑘̂

∗
𝜕𝑓(𝑢𝑘)

𝜕𝑢𝑘
∗

𝜕 ∑ (𝑤
𝑘𝑗

∗ 𝑥𝑗 + 𝑏𝑘 )
𝑚
𝑗=1

𝜕𝑤𝑘𝑗
 

𝜕𝐸

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑥𝑘
∗

𝜕𝑓(𝑢𝑘)

𝜕𝑢𝑘

∗ 𝑥𝑗   (10) 

    
𝜕𝐸

𝜕𝑏𝑘
=

𝜕𝐸

𝜕𝑦𝑘̂
∗

𝜕𝑦𝑘̂

𝜕𝑏𝑘
=

𝜕𝐸

𝜕𝑦𝑘̂
∗

𝜕𝑓(𝑢𝑘)

𝜕𝑢𝑘

            (11) 

Uma vez que a rede neural realiza os cálculos de Backpropagation em um conjunto 

de dados, processo denominado época, os valores da matriz de pesos e bias são 

atualizados para que então a rede realize uma nova passagem dos dados pela rede. 

 Os novos valores obtidos são então comparados com os valores esperados. Se 

esses novos valores não tiverem atingido um erro mínimo esperado, o algoritmo é 

executado novamente  (SVOZIL; KVASNICKA; POSPÍCHAL, 1997). 

Para que um modelo tenha um desempenho adequado deve-se alimentar o modelo 

com um conjunto de dados representativo (costumeiramente utiliza-se cerca de 60% a 70% 

do conjunto de dados total). Esse conjunto garantiria que o modelo funcione bem tanto 

para casos de interpolação quanto para casos de extrapolação, sendo o último o caso de 

maior dificuldade de tratamento (SVOZIL; KVASNICKA; POSPÍCHAL, 1997). 

O processo de Backpropagation pode se dar de duas formas (BRAGA; CARVALHO; 

LUDERMIR, 2000): 

• Local ou on-line: a atualização dos pesos e bias é feita após a apresentação de 

cada conjunto de dados à rede. Apresenta-se à rede um conjunto de dados, a rede 

neural faz os cálculos de feed-forward e backpropagation e atualiza prontamente 

os pesos antes de realizar o cálculo em cima de um segundo conjunto de dados de 

treinamento. 

Este método requer menos memória para os cálculos uma vez que os pesos são 

atualizados a cada época e evita que o algoritmo pare em mínimos locais; 
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• Em lote ou off-line: a atualização dos pesos e bias é feita após a apresentação de 

todos os conjuntos de dados à rede neural. 

Este método é preferível no sentido de que oferece uma melhor estimativa do vetor 

gradiente, já que possui um espaço amostral maior do que no método local. 

Um método misto entre os métodos local e em lote é o método dos mini lotes, que 

consiste em fazer a atualização dos pesos após a época de k conjunto de dados, sendo k 

menor que o número total de conjunto de dados disponível para treino de uma rede neural. 

Neste caso a atualização dos pesos é uma média entre os valores de atualização obtidos 

para cada conjunto de dados pertencentes a k (PARK et al., 2018).  

Outros algoritmos de otimização que receberam atenção devido ao pequeno 

número de épocas necessário para convergência da função erro, mas que também tem 

recebido certa crítica devido à seus ganhos reais são (WILSON et al., 2017): 

• Adam (Adaptive moment estimation): ao contrário do método do gradiente 

descendente, o parâmetro α varia ao longo do processo de aprendizado da rede. A 

cada época de treinamento registra-se o valor da função erro e seu gradiente (𝑔t), 

os pesos então são atualizados através da média móvel do gradiente (𝑚t) e do 

quadrado do gradiente (𝑣t) que tem seus valores controlados por dois hiper 

parâmetros, 𝛽1, 𝛽2   ∈  [0,1) e pela época t (KINGMA; BA, 2014). 

 

                                         𝑚t =  𝛽1 ∗ 𝑚t−1 + (1 − 𝛽1) ∗ 𝑔t                               (12) 

                                          𝑣t =  𝛽2 ∗ 𝑣t−1 + (1 − 𝛽2) ∗ 𝑔t
2                                (13)  

Mas como 𝑚t e 𝑣t são estimadores enviesados, tem-se um fator de correção como    

demonstrado nas Equações 14 e 15, onde t é a época. 

𝑚̂ =
𝑚t

1−𝛽1
t                                                     (14) 

    𝑣 =
𝑣t

1−𝛽2
t                                                                (15) 

Sendo os pesos atualizados pela Equação 16 abaixo, onde 𝜃 é a matriz de 

parâmetros da rede (pesos e bias) e 𝜖 um hiper parâmetro do algoritmo com a 

finalidade de evitar que a taxa de aprendizado aumente bruscamente em casos 

onde 𝑣𝑡̂ é próximo de zero: 

                                           𝜃t =  𝜃t−1 −  𝛼 ∗ 𝑚̂/(√𝑣t̂ + 𝜖)                              (16) 
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• RMSprop: também pertencente ao grupo de algoritmos que não possuem a taxa de 

aprendizado constante. Foi descrito por LYON (2017) e, assim como Adam 

comporta-se como uma média móvel exponencial, tendo como diferença a forma 

como a matriz de parâmetros da rede é atualizada, como demonstrado nas 

Equações 17 e 18. 

𝐸[𝑔t
2] =  𝛽 ∗ 𝐸[𝑔t−1

2 ] + (1 − 𝛽) ∗ [𝑔t
2]                    (17) 

 

   𝜃t =  𝜃t−1 −
𝛼

√𝐸[𝑔
t
2]

∗ 𝑔t                           (18)         

A diferença entre os dois métodos reside no fato de que o algoritmo Adam tende 

ser mais estável uma vez que o gradiente atinge uma região de mínimo (HEUSEL et al., 

2017). 

2.1.4 Tamanho de redes neurais 

O desempenho de uma rede neural é dependente do número de neurônios 

dispostos em suas camadas ocultas. Um excesso de neurônios na rede pode causar um 

problema conhecido como sobre ajuste, que consiste no ajuste muito próximo da rede aos 

dados de treino utilizados, o que implica em uma baixa capacidade de generalização da 

rede. Na contramão desse problema tem-se o baixo desempenho da rede no aprendizado 

quando se faz uso de poucos neurônios (PRIETO et al., 2016). 

Quanto às camadas ocultas, um aumento no número das camadas tem dois efeitos 

negativos mais pronunciados sobre a performance das redes neurais. O primeiro é a 

dificuldade para encontrar o melhor mínimo local da função erro através do método de 

otimização escolhido ( Equação 7) e o segundo é a  instabilidade causada no termo vetor 

gradiente tornando o processo de treinamento mais lento (SVOZIL; KVASNICKA; 

POSPÍCHAL, 1997). 

Entretanto, um número razoavelmente grande de camadas ocultas (DNN) 

possibilitou o desenvolvimento de redes neurais para tarefas mais complexas, com 

destaque especial para a classificação de imagens e de texto. Além da aplicação em 

tarefas complexas, modelos de DNNs tem obtido maior sucesso em tarefas antes 

realizadas por modelos que já obtinham boas performances, como predições, cálculo de 

energia de ativação de moléculas, entre outros (LECUN; BENGIO; HINTON, 2015). 

A presença de ruídos nos dados pode aumentar o problema de sobre ajuste de uma 

rede neural (SVOZIL; KVASNICKA; POSPÍCHAL, 1997). Uma abordagem para o 
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tratamento de ruídos foi feita por SIQUEIRA et al. (2018), onde utilizou-se o próprio ruído 

dos dados como variável de entrada do sistema estudado. 

O número de neurônios e o número de camadas ocultas são perguntas iniciais no 

desenvolvimento de uma rede neural. Métodos desenvolvidos para solucionar o problema 

do tamanho ideal da rede podem ser divididos em dois tipos (HAYKIN, 2001): 

• Crescimento de rede: parte-se uma rede neural com neurônios dispostos em uma 

ou mais camada(s) oculta(s) e adiciona-se ramificações gradativamente de modo a 

fazer com que alcance um desempenho satisfatório; 

• Método de poda: parte-se de uma rede neural com um número elevado de 

neurônios que já possui um desempenho satisfatório e neurônios são eliminados 

gradativamente mantendo o desempenho da rede acima de um limiar desejado. 

2.2 NARIZ ELETRÔNICO 

Narizes eletrônicos são dispositivos que tentam mimetizar o funcionamento do nariz 

humano na tarefa de reconhecimento de aromas. Zwaardemaker e Hogewind foram os 

primeiros a estudar o comportamento elétrico de voláteis. Partindo de medidas feitas sob 

um fino spray de água, descobriram que substâncias voláteis causavam alterações nas 

propriedades elétricas do spray de água tornando possível a detecção de componentes 

voláteis através de métodos sensoriais não clássicos (WILSON; BAIETTO, 2011). 

O nariz humano realiza a tarefa de identificação com o auxílio de cerca de 390 

receptores olfativos que se conectam a moléculas voláteis causando modificações 

estruturais nos receptores. Essas modificações fazem com que sinais sejam enviados ao 

cérebro para identificação (ZHANG et al., 2018). 

Já o nariz eletrônico faz o processo de identificação através de uma série de 

sensores que apresentam respostas que dependem das moléculas adsorvidas. Essas 

respostas são geralmente medidas em função da variação de uma propriedade física do 

sensor (GHASEMI-VARNAMKHASTI et al., 2018).  

Os sensores utilizados para identificação são escolhidos de acordo com a 

aplicação, de forma que o sensor escolhido seja sensível à maior parte possível das 

substâncias voláteis a serem identificadas. Nesse sentido uma baixa seletividade dos 

sensores é desejada, permitindo que uma mesma amostra seja detectada por mais de um 

sensor, incrementando o sinal de determinada substância (WILSON; BAIETTO, 2011). 
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Após a adsorção da molécula de odor nos receptores do nariz eletrônico, o sinal 

elétrico gerado é identificado e gravado em um banco de dados para servir como posterior 

referência para novas análises (ZHANG et al., 2018).  

Uma seletividade muito baixa de um sensor pode resultar em sinais elétricos para 

uma quantidade muito grande de moléculas, aumentando o ruído na resposta. Métodos 

para tratamento desse ruído têm sido desenvolvidos com auxílio de métodos estatísticos 

como o LDA (Linear Discriminant Analysis) e as redes neurais artificiais (ZHANG et al., 

2018). 

Pelo fato de se utilizar de mecanismos químicos e não biológicos na identificação 

de moléculas, o nariz eletrônico apresenta algumas desvantagens perante o nariz humano 

como (ZHANG et al., 2018): 

• não detecção de substâncias a níveis abaixo de pbm (partes por bilhão); 

• dificuldades em separar misturas. 

No que tange às vantagens do nariz eletrônico frente ao nariz humano temos 

(MAJCHRZAK et al., 2018): 

• Maior reprodutibilidade de pareceres sobre aromas; 

• Análises mais rápidas e menos custosas; 

• Ausência de vieses humanos como fadiga ou acomodação à odores. 

Um modelo esquemático do processo desde a exibição da amostra até a 

identificação da substância em questão é apresentado na Figura 7: 
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Figura 7 – Diagrama de bloco de um nariz eletrônico 

 

Fonte: Adaptada de GHASEMI-VARNAMKHASTI et al., (2018) 

O desenvolvimento no ramo dos narizes eletrônicos tem focado especialmente na 

estabilização dos sinais lidos. Soluções como o uso de espectrômetros de massa em 

narizes eletrônicos têm simbolizado um avanço nesse sentido, uma vez que possuem 

sensores dotados de maior seletividade (MAJCHRZAK et al., 2018). 

Dentre as classificações existentes para os narizes eletrônicos temos como 

principal critério o tipo de sistema de detecção empregado pelo aparelho (MAJCHRZAK et 

al., 2018): 

• Semicondutores: são modelos mais econômicos, mas apresentam baixa 

estabilidade do sinal de saída; 

• Sensores eletroquímicos: apresentam um sinal mais estável quando comparado 

com os semicondutores, especialmente por reduzir interferências como da 

umidade. São geralmente maiores, o que pode se tornar uma barreira para algumas 

aplicações; 

• Sensores piezoelétricos: são compactos, o que facilita o uso em trabalhos de 

campo; no entanto, possuem medidas que são replicadas com dificuldade; 

• Espectrômetros de massa: possuem alta sensibilidade e um vasto leque de 

aplicações, porém são mais caros que os outros mencionados até aqui; 

• Cromatografia gasosa: permite análises quantitativas e qualitativas, mas 

demandam um tempo maior para análise das amostras. 

A combinação de sensores pode melhorar as análises realizadas com o auxílio do 

nariz eletrônico, já que cada sensor apresenta uma seletividade específica, aumentando 

dessa forma a quantidade de informação para detecção de substâncias. Deve-se, no 

entanto, atentar-se ao número de dimensões, relacionado com o número de sensores, 
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gerado por análise quando do uso de sensores variados. Um excesso no número de 

dimensões pode acarretar em um ruído que prejudica uma avaliação mais criteriosa do 

equipamento (RÖCK; BARSAN; WEIMAR, 2008). 

Dentre algumas limitações enfrentadas na identificação de substâncias com narizes 

eletrônicos tem-se a diminuição no desempenho de alguns modelos quando se faz uso de 

um grande número de amostras. Essa diminuição, como demonstrado por BOEKER 

(2014), é devida ao aumento na variabilidade dos dados de entrada. 

A variabilidade apresentada nos sinais de um nariz eletrônico depende de vários 

fatores, em especial da substância em si. A utilização da variabilidade como uma variável 

de auxílio na identificação de substâncias foi realizado por SIQUEIRA et al. (2018) por meio 

da modelagem do sinal do nariz eletrônico através de uma equação estocástica diferencial. 

A melhora na performance quando do uso da variabilidade em problemas de 

identificação foi reportado por DUTTA et al. (2006). Em seu trabalho, constatou-se  que um 

melhor desempenho na identificação de bactérias é obtido quando da adição de um ruído 

gaussiano artificial ao sinal lido. À essa melhora na identificação quando da adição de um 

ruído gaussiano em fenômenos não lineares dá-se o nome de ressonância estocástica. 

 Um exemplo do efeito da vantagem quando do uso de equações estocásticas 

diferenciais na identificação de compostos através de sinais de um nariz eletrônico pode 

ser visto na Figura 8: 

Figura 8 – Sinal de um sensor para duas substâncias diferentes com mesmo ∆𝑅 

 

Fonte: Adaptada de SIQUEIRA et al. (2018) 

 No processo de identificação, A, medido por ∆𝑅, é o platô comumente utilizado para 

identificação de uma substância com o uso de um nariz eletrônico. As curvas da Figura 8 
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são de substâncias diferentes e apesar disso apresentam o mesmo ∆𝑅,  o que pode levar 

a conclusões errôneas sobre a substância em questão.  

 Os percentuais de amostras classificadas corretamente obtidos por SIQUEIRA et 

al. (2018) com a aplicação da equação estocástica diferencial são mostradas abaixo. Os 

valores foram obtidos utilizando-se três sensores dentre os 32 disponíveis no nariz 

eletrônico utilizado. Esses três sensores foram escolhidos aleatoriamente dentre os que 

mais apresentaram um comportamento típico ao longo das medidas: 

• Com redes neurais: 67%; 

• Com PCA (utilizando apenas o primeiro componente principal): 58%; 

• Com LDA :63,6%; 

• Modelo estocástico: 91,6%. 

A alta performance obtida pelo modelo estocástico é devida ao fato de o modelo 

utilizar-se de cinco parâmetros e da própria variabilidade dos dados no processo de 

identificação de substâncias. O modelo estocástico é, portanto, uma alternativa 

considerável para caracterização de substâncias não identificáveis por métodos 

convencionais (SIQUEIRA et al., 2018). 
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3 MATERIAIS E MÉTODOS 

3.1 NARIZ ELETRÔNICO 

O presente trabalho foi executado com auxílio de dados coletados via nariz 

eletrônico Cyrano Sciences’ Cyranose 320 no Laboratório de Biocatálise – EEL/USP. O 

nariz eletrônico Cyranose 320 possui 32 sensores a base de polímeros e nanopartículas 

de carbono em série.  

3.1.1 Tempo de exposição 

O tempo durante o qual o nariz ficou exposto às amostras foi curto o suficiente (15 

segundos), de modo a garantir uma concentração constante de substâncias voláteis ao 

longo das leituras. O tempo de medição é o período no qual a agulha ficou inserida dentro 

do frasco até sua retirada (SIQUEIRA et al., 2018). 

Os dados utilizados como base nesse trabalho foram coletados e pré-tratados por 

SIQUEIRA et al. (2018) como discutido em 3.1.2 Pré-tratamento dos dados.  

3.1.2 Pré-tratamento dos dados 

 Pelo fato de o tempo de sucção do material proposto no modelo ser menor do que 

o tempo de remoção, os dados obtidos no final do período de sucção são descartados. 

Esse pré-tratamento nos dados é uma etapa importante no cálculo dos parâmetros da 

Equação 27 (SIQUEIRA et al., 2018).  

Na metodologia utilizada por SIQUEIRA et al. (2018), apenas a fase de adsorção 

foi modelada e a linha de base do sinal foi separada da etapa de leitura do sinal através da 

adsorção de elementos voláteis no início da medição. O critério de rejeição de dados foi 

com o auxílio do coeficiente de correlação linear (R²) calculado entre os dados lidos e os 

valores provenientes da Equação 27. 

3.1.3 Modelagem do sinal do nariz eletrônico 

A equação estocástica diferencial escrita por SIQUEIRA et al. (2018) é apresentada 

abaixo. Ela foi desenvolvida a partir dos mecanismos de adsorção e dessorção de sensores 

propostas por LUNDSTRÖM (1996). 

 O mecanismo proposto por LUNDSTRÖM (1996) tem as seguintes premissas como 

verdadeiras: 

1. As velocidades de adsorção e dessorção são obtidas através de modelos cinéticos 

de ordem 1; 
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2. O sinal (S) lido pelo nariz eletrônico é proporcional ao número de substâncias 

voláteis ligadas aos sítios ativos (n) dividido pelo número total de sítios ativos (N). 

Logo o sinal (S) é S=n/N; 

3. Considera-se a concentração da substância volátil constante ao longo de todo o 

processo de medição. 

As premissas 1-3 resultam na Equação 19, onde 𝑘 e b são parâmetros obtidos por 

meio do ajuste do modelo aos sinais de entrada e do tempo de exposição. 

𝑆(𝑡) = 𝑏 ∗ (1 − 𝑒−𝑘∗𝑡)    (19)                 

 Após um longo período de tempo, o sistema atinge o estado estacionário e o valor 

da Equação 19 atinge um platô horizontal de valor b. 

 Uma quarta premissa foi adotada no desenvolvimento devido à identificação de 

inclinações positivas ou negativas ao invés do platô (SIQUEIRA et al., 2018): 

4. Criação de um estado precursor (PE) antes do estado gerador de sinal (PE’). 

Portanto, nos dados utilizados nesse trabalho, o sinal S(t) é uma função do número 

de estados precursores ocupados (SIQUEIRA et al., 2018). Um esquema para o 

mecanismo de adsorção e dessorção proposto na Figura 9: 

Figura 9 – Modelo para o mecanismo de adsorção e dessorção 

 

Fonte: SIQUEIRA et al. (2018) 

As premissas de 1 - 4 foram então aplicadas na modelagem do mecanismo de 

adsorção e dessorção, onde 𝐿 é a fração de sensores não ocupados (SIQUEIRA et al., 

2018): 

𝐿 + 𝑃𝐸 = 1     (20)      

 Assumiu-se que os estados precursores podem ser classificados entre os que já 

geraram (PE) e os que ainda irão gerar sinal (FPE) (SIQUEIRA et al., 2018): 

𝑃𝐸 = 𝐹𝑃𝐸 + 𝑃𝐸′    (21) 
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 A partir da Figura 9 obteve-se a Equação diferencial 22, onde 𝑘𝑒 é a constante de 

equilíbrio entre o processo de adsorção e dessorção. Na Equação 21 assumiu-se uma 

reação de equilíbrio rápida para a criação do estado precursor (PE) (SIQUEIRA et al., 

2018): 

𝑑𝑃𝐸

𝑑𝑡
= 𝑘1 ∗ 𝑀 ∗ 𝐿 −  𝑘2 ∗ 𝑃𝐸 = 0 →

𝑘2

𝑘1
= 𝑘𝑒 =

𝑀∗𝐿

𝑃𝐸
            (22) 

 Isolando L e substituindo na Equação 20, tem-se: 

 𝑃𝐸 =
1

1+
𝑘𝑒
𝑀

              (23) 

 Com auxílio da Figura 9, deduziu-se a Equação diferencial 16 para o estado gerador 

de sinal (SIQUEIRA et al., 2018): 

𝑑𝑃𝐸′

𝑑𝑡
= 𝑘3 ∗ 𝑃𝐸 −  𝑘4 ∗ 𝑃𝐸′ =

𝑘3

1+
𝑘𝑒
𝑀

− 𝑘4 ∗ 𝑃𝐸′           (24) 

 Resolvendo a Equação diferencial 23 para PE’ (0) =0: 

𝑃𝐸′ =
𝑘3

𝑘4∗(1+
𝑘𝑒
𝑀

)
∗ (1 − 𝑒−𝑘4∗𝑡)            (25) 

 Por fim, assumiu-se que a taxa de variação do sinal é proporcional à ocupação de 

sítios livres do estado precursor (SIQUEIRA et al., 2018): 

𝑑𝑆

𝑑𝑡
= 𝑘𝑠 ∗ 𝐹𝑃𝐸 = 𝑘𝑠 ∗ (𝑃𝐸 − 𝑃𝐸′)   

𝑑𝑆

𝑑𝑡
= 𝑘𝑠 ∗ ( 

1

1+
𝑘𝑒
𝑀

−
𝑘3

𝑘4∗(1+
𝑘𝑒
𝑀

)
+

𝑘3∗𝑒−𝑘4∗𝑡

𝑘4∗(1+
𝑘𝑒
𝑀

)
 )           (26) 

 Resolvendo-se a Equação 26 para S(0) = 0, tem-se: 

  𝑆(𝑡) =
𝑘𝑠

(1+
𝑘𝑒
𝑀

)
∗ (1 −

𝑘3

𝑘4
) ∗ 𝑡 + 

𝑘3∗𝑘𝑠

(𝑘4)2∗(1+
𝑘𝑒
𝑀

)
∗ (1 − 𝑒−𝑘4∗𝑡)             (27) 

 Denominando o termo que multiplica t por 𝑎, o que multiplica (1 − 𝑒−𝑘4∗𝑡) por b e 

𝑘4= k, tem-se: 

𝑆(𝑡) = 𝑎 ∗ 𝑡 + 𝑏 ∗ (1 − 𝑒−𝑘∗𝑡)             (28) 

 Uma modelagem também foi proposta para o período de purga do sistema, 

momento onde ocorre a remoção das substâncias voláteis do sensor em um tempo Tr a 

partir do início da medição. Para fins de cálculo, transladou-se o tempo para t=t’-Tr, onde 
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t’ é o tempo transcorrido desde o início do processo de medição (SIQUEIRA et al., 2018). 

Na escala de tempo t os valores de S, PE, PE’ e FPE tornam-se: 

S(0) =Sr,        PE(0) =PEr,        PE’(0) =PE’r,        FPE(0) =FPEr 

Modelou-se então a variação de PE de acordo com as condições acima e através 

da Equação 29 (SIQUEIRA et al., 2018): 

𝑑𝑃𝐸

𝑑𝑡
= −(𝑘2 + 𝑘3) ∗ 𝑃𝐸             (29) 

 Sendo a solução da Equação 29 dada pela Equação 30: 

𝑃𝐸(𝑡) = 𝑃𝐸𝑟 ∗ 𝑒−(𝑘2+𝑘3)∗𝑡           (30) 

A variação de PE’ foi modelada de acordo com a Equação 31 e considerando-se a 

condição inicial PE’(0) = PE’r (SIQUEIRA et al., 2018): 

𝑑𝑃𝐸′

𝑑𝑡
= 𝑘3 ∗ 𝑃𝐸 −  𝑘4 ∗ 𝑃𝐸′           (31) 

 A solução da Equação 31 é dada pela Equação 32: 

𝑃𝐸′(𝑡) = 𝑃𝐸′𝑟 ∗ 𝑒−(𝑘4)∗𝑡 +  
𝑘3∗𝑃𝐸𝑟∗𝑒−(𝑘2+𝑘3)∗𝑡

𝑘4−(𝑘2+𝑘3)
−

𝑘3∗𝑃𝐸𝑟∗𝑒−𝑘4∗𝑡

𝑘4−(𝑘2+𝑘3)
           (32) 

 E a variação do sinal S foi modelada pela Equação 33 (SIQUEIRA et al., 2018): 

𝑆(𝑡) = 𝑆𝑟 + 𝐷 ∗ (1 − 𝑒−(𝑘2+𝑘3)∗𝑡) − 𝐸 ∗ (1 − 𝑒−𝑘4∗𝑡)           (33) 

 Onde D e E foram definidos como: 

𝐷 =
𝑘𝑠 ∗ 𝑃𝐸𝑟 ∗ (𝑘2 + 𝑘3 − 𝑘4 + 𝑘3)

(𝑘2 + 𝑘3 − 𝑘4) ∗ (𝑘2 + 𝑘3)
, 𝐸 = (𝑃𝐸′𝑟 +

𝑘3 ∗ 𝑃𝐸𝑟

𝑘2 + 𝑘3 − 𝑘4
) ∗

𝑘𝑠

𝑘4
 

 Portanto a modelagem do sinal lido por um nariz eletrônico, considerando a purga 

pode ser descrito por (SIQUEIRA et al., 2018): 

𝑆(𝑡) = {
𝑎 ∗ 𝑡 + 𝑏 ∗ 𝑒−(𝑘2+𝑘3)∗𝑡,   𝑠𝑒 𝑡 < 𝑇𝑟

𝑆𝑟 + 𝐷 ∗ (1 − 𝑒−(𝑘2+𝑘3)∗(𝑡−𝑇𝑟)) − 𝐸 ∗ (1 − 𝑒−𝑘4∗(𝑡−𝑇𝑟)), 𝑠𝑒 𝑡 > 𝑇𝑟
         

                    (34) 

Na Equação 34, o termo Sr  é dado por: 

𝑆𝑟 = 𝑎 ∗ 𝑇𝑟 + 𝑏 ∗ (1 − 𝑒−𝑘∗𝑡𝑟 )            (35) 

A aplicação de um modelo estocástico no sinal de um nariz eletrônico foi devida ao 

fato de que a variabilidade apresentada em leituras com nariz eletrônico depende da 
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própria substância sob análise. Logo, por depender da própria substância, acredita-se que 

essa variabilidade possa auxiliar na identificação da substância (SIQUEIRA et al., 2018). 

A equação estocástica diferencial utilizada nesse trabalho para modelagem do sinal 

do nariz eletrônico foi proposta por (SIQUEIRA et al., 2013). Na Equação 36, 𝑎, 𝑏, 𝑐, 𝑘 e 𝑝 

são os parâmetros que dependem do sinal medido e 𝑋𝑡 é a medida da variabilidade do 

sinal em um tempo qualquer t em minutos. 

 𝑑𝑋𝑡 = (𝑎 +
𝑏∗𝑘

𝑒𝑘∗𝑡
) ∗ 𝑑𝑡 +  

𝑐

(𝑡+1)𝑝
∗ 𝑑𝑊𝑡           (36) 

 O algoritmo utilizado para a obtenção dos parâmetros da Equação 28 é baseado 

numa estimativa inicial do valor de 𝑘 e foi descrito por SIQUEIRA et al. (2013) tendo como 

base técnicas para estimativas de equações diferenciais estocásticas e de amostragem 

(SIQUEIRA et al., 2018). 

 Uma variação apresentada na metodologia descrita por SIQUEIRA et al. (2013) está 

no parâmetro 𝑐: 

     𝑐 =
1

8
∗ √

∑ 𝑄𝑖

∑
1

(𝑡𝑝+1)𝑝

            (37) 

 Sendo 𝑄𝑖 calculado através da Equação 38: 

𝑄𝑖 =
(∆𝑋𝑖)2

∆𝑡𝑖
             (38) 

3.2 ÍNDICE DE ACIDEZ 

Os óleos vegetais utilizados como amostras para o nariz eletrônico foram 

caracterizados quanto ao teor de acidez, valor de peróxido, viscosidade, densidade e cor. 

As amostras foram coletadas na cidade de Lorena-SP de duas fontes diferentes: 

residencial e comercial em um total de 4 vezes a cada 20 dias visando obter as amostras 

em diferentes períodos (SIQUEIRA et al., 2018). 

As amostras foram filtradas à vácuo, homogeneizadas e estabilizadas em cerca de 

23ºC antes de serem submetidas ao nariz eletrônico. Cada uma das 12 amostras foi 

introduzida em 10 frascos de 45 ml de capacidade com uma capa de borracha, totalizando 

120 frascos, sendo 60 de cada fonte, residencial ou comercial. Os frascos ficaram em 

repouso durante 12h à 23ºC para permitir o equilíbrio liquido vapor, sendo então a agulha 
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do nariz eletrônico introduzida na região do frasco acima da mistura. A medida de acidez 

foi realizada de acordo com as normas da Association of Official Analytical Chemists 

(AOAC)  (SIQUEIRA et al., 2018). 

3.3 REDES NEURAIS ARTIFICIAIS 

A rede neural foi escrita em linguagem Python, versão 3.7, utilizando a biblioteca 

Keras (CHOLLET, 2015) e a biblioteca Tensorflow (GOOGLE, 2015) como backend  e 

tendo como variáveis de entrada os parâmetros do modelo estocástico e como variável de 

saída a acidez dos óleos vegetais. 

3.3.1 Escolha das variáveis independentes 

Os dados utilizados para treino da rede representaram 70% do total de dados da 

base original; e como cada um dos 12 óleos foi amostrado 10 vezes, garantiu-se que uma 

quantidade igual de leituras de cada óleo estivesse presente na base de treino.  

A fim de identificar os sensores a serem utilizados na rede neural, fez-se um filtro 

utilizando o R² de cada sensor, que media o ajuste do modelo estocástico ao sinal do nariz 

eletrônico. Assim, sensores que não obtiveram pelo menos uma das 120 amostras com R² 

maior ou igual a 0,99 foram descartadas. 

Como os parâmetros 𝑐 e 𝑝 da Equação 28 modelam a variância do sinal enquanto 

os outros três 𝑎, 𝑏 e 𝑘 modelam a média, utilizou-se apenas esses três últimos parâmetros 

na construção da rede. 

Visando escolher o conjunto de variáveis a ser utilizado no modelo, foram 

construídas duas redes neurais, uma com função de ativação sigmoide e outra com função 

de ativação tangente hiperbólica. 

Para cada uma delas, inicialmente modelou-se cada um dos parâmetros disponíveis 

por vez e registrou-se seu erro médio absoluto (MAE).  

Escolhendo-se então o preditor com o menor valor de MAE de validação, modelou-

se novamente uma rede neural para cada um dos parâmetros restantes, sendo que neste 

caso as variáveis de entrada eram o preditor escolhido anteriormente e cada um dos 

restantes. Prosseguiu-se dessa forma até que todos os parâmetros fossem adicionados à 

rede. 

Dado o pouco volume de dados, utilizou-se nesta etapa validação cruzada com 3 

partições para se garantir uma maior robustez dos dados obtidos. 
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A configuração dessa rede neural inicial, doravante mencionada como rede simples, 

foi: 

• 1 camada oculta com 5 neurônios; 

• Função de ativação identidade na saída; 

• Algoritmo de otimização do método de Backpropagation  sendo o gradiente 

estocástico descendente; 

• Dados normalizados entre [0,1] para a rede com função de ativação sigmoide e 

dados convertidos em valores z para a rede com função de ativação tangente 

hiperbólica; 

• 200 épocas. 

Somou-se então a ordem em que cada variável foi adicionada as duas redes 

neurais a fim de gerar um ranking de importância de cada variável ao modelo. 

 O embasamento por trás de tal mecanismo para escolha de variáveis é o de que, 

mesmo utilizando redes neurais com diferentes funções de ativação, e consequentemente 

intervalos de dados normalizados diferentes, tais variáveis foram identificadas pela rede 

como as que mais aumentaram a capacidade preditiva da rede. 

3.3.2 Ajuste dos parâmetros 

Após a seleção de variáveis, converteu-se os valores de entrada e saída da rede 

para valores z e então verificou-se como alterações na função de ativação e no otimizador 

utilizado no método de Backpropagation influenciavam o R² de teste da rede, para que 

esses dois melhores parâmetros pudessem ser definidos.  

As funções de ativação testadas neste trabalho foram: sigmoide, tangente 

hiperbólica e ReLU. Já os algoritmos de otimização foram: Gradiente Descendente 

Estocástico, RMSprop e Adam. Todos as análises utilizaram validação cruzada com 5 

partições. 

Partindo então do melhor conjunto de função de ativação e otimizador, variou-se o 

número de neurônios na rede e ponderou-se a necessidade da adição de camadas ocultas 

adicionais em caso de baixo desempenho da rede na predição. 
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4 RESULTADOS E DISCUSSÃO 

4.1 ESCOLHA DE SENSORES 

 Para verificar quais sensores obtiveram pelo menos uma amostra com R² maior ou 

igual a 0,99, contou-se quantos deles respeitaram esse critério. O resultado é exibido na 

Figura 10 abaixo.  

Figura 10 – Contagem do número de amostras por sensor segundo o critério R²>=0,99 

Fonte: Próprio Autor 

 Um total de 13 sensores passaram por esse critério de aderência dos dados ao 

modelo, sendo que o sensor 31 foi o que melhor se ajustou ao modelo, com um total de 40 

amostras com um R² maior ou igual a 0,99. Seguido pelo sensor 6 com 28 amostras e pelo 

sensor 23 com 16. 

 Buscando analisar o comportamento dos parâmetros, fez-se um boxplot de cada 

parâmetro, como mostrado nas figuras abaixo para os parâmetros 𝑎, 𝑏 e k a fim de observar 

como os valores de cada um dos parâmetros se comportam. 
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Figura 11 – Boxplot do parâmetro 𝑎 para os sensores selecionados 

 

Fonte: Próprio Autor 

 Pela análise da Figura 11 percebe-se que o parâmetro 𝑎 obteve distribuições em 

sua grande maioria com muitos outliers, à exceção desse parâmetro para o sensor 5 que 

obteve apenas um outlier. 

Figura 12 – Boxplot do parâmetr 𝑏 o para os sensores selecionados 

 

Fonte: Próprio Autor 

Analisando-se então a Figura 12 para o parâmetro 𝑏 quase todos os sensores 

obtiveram distribuições bem comportadas, em especial os obtidos no sensor 28, 5, 12, 16  

e 31. 
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Figura 13 – Boxplot do parâmetro 𝑘 para os sensores selecionados 

 

Fonte: Próprio Autor 

 E para o parâmetro 𝑘, analisando-se a figura acima, o número de outliers por sensor 

foi parecido com os obtidos para o parâmetro 𝑏, sendo os sensores mais comportados os 

de número 5, 20 e 23. 

4.2 ESCOLHA DOS PARÂMETROS 

Utilizou-se então a rede neural simples com função de ativação sigmoide e a 

abordagem descrita em 3.3.1. Os dados são exibidos na Figura 14. 

Figura 14 – Erro médio absoluto vs número de preditores com função de ativação sigmoide 

 

Fonte: Próprio Autor 
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 A Figura 15 exibe os resultados obtidos pela mesma abordagem da figura anterior, 

mas utilizando como função de ativação a função tangente hiperbólica. 

Figura 15 – Erro médio absoluto vs número de preditores com função de ativação tangente 
hiperbólica 

 

Fonte: Próprio Autor 

As curvas são as tipicamente obtidas quando métricas de precisão de um modelo 

são plotadas contra seu grau crescente de complexidade, sendo o grau de complexidade 

aqui representado pelo número de preditores. 

Nestes casos após um determinado grau de complexidade a métrica de precisão 

no conjunto de dados de treino cai com o aumento da complexidade, ao passo que a 

mesma métrica no conjunto de validação atinge um equilíbrio ou então aumenta 

novamente. Essa inversão/estabilização é interpretada como o ponto onde o modelo 

começa a sobreajustar os dados de treinamento. 

Verificando-se então a ordem de entrada de cada variável em seu respectivo 

modelo e somando-se esses índices. Os resultados obtidos apenas para primeiras dez 

variáveis com a menor soma das ordens de entrada são exibidos na Tabela 1. 
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Tabela 1 – Ranking de variáveis de acordo com a entradas nos modelos 

Variável Ordem de entrada sigmoide 
Ordem de entrada tangente 

hiperbólica 
Soma das 

ordens 

9a 4 6 10 

9b 7 3 10 

23b 3 11 14 

20k 11 4 15 

6a 13 5 18 

20a 17 2 19 

9k 6 15 31 

5b 2 21 23 

17k 8 16 24 

31a 16 10 26 

Fonte: Próprio Autor 

 Então as cinco primeiras variáveis com a menor soma das ordens de entrada  (9𝑎, 

9𝑏, 23𝑏, 20𝑘, 6𝑎) foram selecionadas para modelar a rede neural final. Esse número foi 

escolhido tendo em vista o pouco número de amostras disponíveis para treinamento. 

 Verificando-se nas Figura 11, Figura 12 e Figura 13 percebe-se que dos parâmetros 

selecionados, os mais bem comportados são o 20𝑘, 23𝑏 e 9𝑏 por apresentarem poucos 

outliers, ao passo que os parâmetros 9a e 6a possuem valores com uma maior quantidade 

de outliers. 

4.3 AJUSTE DOS PARÂMETROS 

 Tendo em vista o pouco volume de dados disponíveis, utilizou-se validação cruzada 

em cinco partições na etapa de ajuste dos parâmetros visando uma maior robustez dos 

resultados obtidos.  

Normalizando-se então os dados em valores z e variando os parâmetros descritos 

em 3.3.2 utilizando-se 200 épocas, obteve-se os resultados exibidos na Figura 16. 



46 

Figura 16 – R² de treino e teste variando-se a função de ativação e otimizador 

 

Fonte: Próprio Autor 

Por motivos de visualização, valores negativos foram convertidos em zero. Assim, 

analisando a Figura 16, nota-se que a função ReLU exibiu um melhor R² de 0,5977 nos 

dados de treino quando em conjunto com o otimizador SGD. No entanto, no conjunto de 

dados de teste obteve um desempenho nulo, independente do otimizador utilizado para os 

dados de teste. Isso pode ser caracterizado como um caso de grande sobre ajuste da rede 

em relação aos dados de treino. 

A função sigmoide apresentou, assim como a função ReLU, seu melhor valor de R² 

de treino (0,4548) quando treinada com o otimizador SGD e também um R² de teste nulo. 

Já quando utilizada com o otimizador RMSprop, o R² de treino foi de 0,3314 e o de teste 

0,1042. 

Assim como a  função sigmoide e ReLU, os dados obtidos com a função tangente 

hiperbólica (Tanh) exibiram o melhor R² de treino e um R² de teste nulo quando a rede foi 

treinada com o SGD. E assim como a sigmoide, a função Tanh também obteve o melhor 

R² de teste(0,1167) quando treinada com o RMSprop. 

Analisando-se o efeito do otimizador sobre o R² de treino, nota-se que o SGD exibe 

uma maior capacidade de ajuste aos dados, no entanto essa capacidade falha ao ser 

testada contra novas amostras, ou seja, não permite uma capacidade de generalização 

resultando no R² de teste obtido de 0. 

Dados os baixos valores exibidos na Figura 16, verificou-se como a alteração da 

função de saída da rede afetaria os resultados. Os resultados, mantendo-se a função de 

ativação da camada oculta como a ReLU e variando a de saída, são exibidos na Tabela 2. 

Adam RMSprop SGD Adam RMSprop SGD Adam RMSprop SGD

ReLU ReLU ReLU Sigmoide Sigmoide Sigmoide Tanh Tanh Tanh

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

R² de treino e teste com diferentes funções de 
ativação e otimizadores

R2 treino R2 teste
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Tabela 2 – R² de treino e teste para rede neural com função de ativação ReLU na camada oculta e 
variando a de saída 

 R² treino R² teste 

Função ReLU Sigmoide Tanh ReLU Sigmoide Tanh 

Otimizador       

Adam 0,4067 0,3168 0,4295 -1,6461 0,0391 -0,0769 

RMSprop 0,2838 0,2568 0,3905 -0,4124 0,0179 0,0049 

SGD 0,4455 0,2996 0,4649 -1,37701 0,0035 -0,2784 

Fonte: Próprio Autor 

Comparando-se os dados acima com os valores obtidos para a função ReLU da 

Figura 16, percebe-se que nenhuma das funções utilizadas na saída obteve um R² de treino 

melhor, independente do otimizador. Já no que tange aos resultados de teste, todas 

obtiveram uma ligeira melhora comparada com os valores referência , sendo que o melhor 

desempenho é atribuído ao uso da função sigmoide na camada de saída. 

O fato de o R² de treino ter sido menor com um ganho simultâneo no R² de teste 

(máximo de 0,0391 vs -0,0315) pode ser associado a uma leve melhora na capacidade de 

generalização da rede, no entanto, os baixos valores ainda caracterizam um sub ajuste dos 

da rede aos dados.  

 Os resultados mantendo-se a função de ativação da camada oculta como a 

sigmoide e variando a de saída são exibidos na Tabela 3. 

Tabela 3 – R² de treino e teste para rede neural com função de ativação sigmoide na camada oculta 
e variando a de saída 

 R² treino R² teste 

Função ReLU Sigmoide Tanh ReLU Sigmoide Tanh 

Otimizador       

Adam 0,2177 0,2109 0,3479 -0,1138 0,0399 0,0689 

RMSprop 0,2249 0,1752 0,3232 0,0137 0,0484 0,0951 

SGD 0,2233 0,1839 0,3552 -0,0034 0,0068 0,0307 

Fonte: Próprio Autor 

Comparando-se então os resultados obtidos para a função sigmoide da Figura 16, 

nenhuma melhora significativa no desempenho para os valores de treino foi observada. Já 

para os dados de teste, apenas quando se modelou a rede ou com o RMSprop ou com a 

função de saída como a ReLU não se obteve melhora perante os dados referência. 
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Neste caso, o R² de treino das combinações foi menor quando comparado com a 

rede original e os R² de teste foram, em média, ligeiramente maiores, sofrendo do mesmo 

efeito que a rede com função da camada oculta ReLU que é o sub ajuste. 

Por fim, os resultados mantendo-se a função de ativação da camada oculta como 

a tangente hiperbólica e variando a de saída são exibidos na Tabela 4. 

Tabela 4 – R² de treino e teste para rede neural com função de ativação tangente hiperbólica na 
camada oculta e variando a de saída 

 R² treino R² teste 

Função ReLU Sigmoide Tanh ReLU Sigmoide Tanh 

Otimizador       

Adam 0,3326 0,2891 0,3752 -0,2075 -0,0285 0,06460 

RMSprop 0,2767 0,2589 0,3426 -0,0790 -0,0005 0,1069 

SGD 0,5370 0,2799 0,4293 -0,6988   -0,0176 0,1051 

Fonte: Próprio Autor 

Neste caso, o R² de treino dos dados referência (Figura 16) foi menor para todos os 

casos analisados. Já para os resultados no conjunto de teste, o uso da função ReLU foi 

acompanhado de uma queda no desempenho em todos os casos, e o uso da sigmoide 

apresentou melhora apenas com o otimizador SGD.  

Apresentando grande melhoria nesta etapa, foi o uso da função tangente 

hiperbólica que apesar do decréscimo no R² de treino foi acompanhado de um acréscimo 

no R² de teste, sendo este aumento mais pronunciado no caso do otimizador SGD (-0,3193 

para 0,1051). O valor de R² de teste neste caso, dobrou para o otimizador Adam e 

permaneceu praticamente constante para o RMSprop. 

Como os resultados obtidos para combinações foram baixos, verificou-se a hipótese 

de sobre ajuste da rede com função de saída linear. Os gráficos foram feitos com 800 

épocas de treinamento, visando permitir uma melhor visualização de todo o treinamento. 

Colocou-se então em um gráfico a curva do erro médio quadrado da função ReLU 

e os otimizadores utilizados. O resultado é exibido na Figura 17. 
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Figura 17 – Erro médio quadrado vs épocas para função de ativação ReLU com diversos 
otimizadores 

 

Fonte: Próprio Autor 

 Percebe-se pela análise da Figura 17, que quando do treino da rede com a função 

ReLU o erro médio quadrado decresce muito lentamente, independente do otimizador, o 

que significa que a rede lentamente vai se adaptando cada vez melhor ao conjunto de 

dados de treino, ao passo que o erro médio quadrado do conjunto de teste cresce devido 

à esse mesmo ajuste mencionado.  

Neste caso, uma parada precoce do treinamento não solucionaria o problema, visto 

que o erro médio não decresce de forma consistente em nenhuma etapa do treinamento. 

 O desempenho da função ReLU nessas condições pode ser explicada pelo fato de 

que quando esse tipo de função é aplicada em redes neurais de poucas camadas, 

denominadas redes rasas, um número maior de neurônios é necessário para que a rede 

consiga encontrar mínimos mais precisos da função erro (ECKLE; SCHMIDT-HIEBER, 

2019). 

 A mesma curva exibida para a função de ativação ReLU foi feita para as outras 

duas funções de ativação sigmoide e tangente hiperbólica nas Figura 18 e Figura 19, 

respectivamente. 
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Figura 18 – Erro médio quadrado vs épocas para função de ativação sigmoide com diversos 
otimizadores 

 

Fonte: Próprio Autor 

Figura 19 – Erro médio quadrado vs épocas para função de ativação tanh com diversos otimizadores 

 

Fonte: Próprio Autor 

 Analisando a Figura 18, percebe-se que antes das 200 épocas as funções sigmoide 

e tangente hiperbólica, independente do otimizador, haviam atingido um erro mínimo 

quadrado e esse aumentou novamente até que o treinamento terminasse. O mesmo 

comportamento é evidenciado nas Figura 19. Esse comportamento é característico de 

processos de sobre ajuste. 

 A mesma análise da hipótese de sobre ajuste foi conduzida para as redes onde a 

função de saída foi variada. Alguns casos mais pronunciados para cada par função de 

ativação na camada oculta e de saída são mostrados nas figuras abaixo. 
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Figura 20 – Erro médio quadrado vs épocas para função de ativação ReLU na camada oculta e 
sigmoide na saída com diversos otimizadores 

 

Fonte: Próprio Autor 

 Analisando-se a Figura 20 em conjunto com os dados da Tabela 2, nota-se que no 

caso da rede com o par de funções ReLU – sigmoide a rede exibe sinais de sobre ajuste 

para todos os otimizadores, exceto o SGD, sendo a forma menos pronunciada quando do 

uso do otimizador Adam.  

Entretanto, como evidenciado na Tabela 2, ainda que a rede sofra tal processo, 

seus baixos valores de R² as colocam também na condição de ou não ter complexidade 

suficiente para capturar as relações nos dados ou não ser a função que melhor representa 

a função verdadeira.  

Figura 21 – Erro médio quadrado vs épocas para função de ativação sigmoide na camada oculta e 
ReLU na saída com diversos otimizadores 

 

Fonte: Próprio Autor 

 Analisando a Figura 21, nota-se que quando a sigmoide é usada em conjunto com 

a ReLU , a rede exibe sinais de sobre ajuste leve para o otimizador RMSprop e mais intenso 

para o Adam. Já com o otimizador SGD nota-se uma queda consistente e lenta do erro 

médio dos dados de teste, ainda que de forma muito ruidosa, dificultando assim determinar 

um ponto ótimo de parada do treinamento. 
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 Essa diferença no número de épocas necessárias para determinação do mínimo 

quando comparado o otimizador SGD com o RMSprop e o Adam pode ser explicado pela 

diferença no valor da taxa de aprendizado. Estes possuem uma taxa de aprendizado que 

é atualizada a cada época de treinamento, enquanto que naquela a é fixa ao longo de todo 

o treinamento, refletindo então no número de épocas necessário para convergência 

(RUDER, 2016). 

Figura 22 – Erro médio quadrado vs épocas para função de ativação tangente hiperbólica na camada 
oculta e na saída com diversos otimizadores 

 

Fonte: Próprio Autor 

 Pela Figura 22 percebe-se que em todos um casos um número alto de épocas 

causa um sobre ajuste da rede aos dados quando do treinamento da rede com função de 

ativação tangente hiperbólica na camada oculta e na de saída, e que o mínimo local no 

conjunto de teste é encontrado rapidamente para então subir de forma consistente até o 

final do treinamento. 

 Tendo confirmado então a hipótese de sobre ajuste da rede aos dados de treino, 

modelou-se a rede com um mecanismo denominado Early Stopping. Tal mecanismo 

interrompe o processo de treinamento da rede quando uma métrica de interesse deixa de 

seguir um comportamento desejado. Em modelos preditivos, utilizam-se métricas como 

erro quadrado médio (PRECHELT, 2012).  

Nos resultados daqui para frente utilizou-se então o erro quadrado médio como 

métrica para determinar quando o treinamento deveria ser interrompido. O critério de 

parada foi um aumento por 10 épocas consecutivas do erro nos dados de teste. 

 Além disso, dada a baixa performance da rede, mesmo em casos onde o sobre 

ajuste foi pequeno estudou-se também o efeito do aumento do número de neurônios da 

camada oculta sobre o R² de treino e teste. O número de neurônios foi variado no intervalo 

[5,25]. 
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 Os resultados obtidos para redes que foram modeladas com a função de ativação 

ReLU na camada oculta são exibidos na Tabela 5. 

Tabela 5 – R² de treino e teste com função tangente ReLU na camada oculta e variando função de 
saída, otimizador e neurônios 

Função Otimizador Épocas # neurônios R² treino R² teste 

 

Linear 

 

Adam 44 5 0,4205 0,0747 

RMSprop 16 5 0,3548 0,1499 

SGD 37 12 0,4775 -0,2819 

ReLU 

Adam 27 5 0,2829 -0,0045 

RMSprop 28 16 0,2169 0,0454 

SGD 11 20 0,2969 -0,0551 

Sigmoide 

Adam 103 7 0,2758 0,0795 

RMSprop 73 9 0,2158 0,0606 

SGD 96 24 0,2130 0,0369 

Tangente 
hiperbólica 

Adam 31 7 0,3809 0,1294 

RMSprop 54 6 0,3430 0,1694 

SGD 31 7 0,3972 0,1178 

Fonte: Próprio Autor 

 Analisando os valores da tabela acima com os obtidos anteriormente para redes 

que tinham a função ReLU na camada oculta (Figura 16 e Tabela 2), nota-se que em todos 

os casos foram obtidos desempenhos superiores aos anteriores.  

Quando a função da camada de saída foi ou a ReLU ou a sigmoide, nota-se que 

um aumento significativo da complexidade da rede foi necessário para que desempenho 

maiores fossem obtidos. 

De destaque, nota-se a um ganho de mais de dez vezes quando a rede foi 

modelada com a tangente hiperbólica na saída sem um ganho excessivo na complexidade 

da rede, indicando assim que nesta estrutura o Early Stopping teve um efeito positivo 

pronunciado na capacidade de generalização da rede. 

 Os resultados obtidos quando para a rede modelada com função de ativação da 

camada oculta como sigmoide são exibidos na Tabela 6. 
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Tabela 6 – R² de treino e teste com função sigmoide na camada oculta e variando função de saída, 
otimizador e neurônios 

Função Otimizador Épocas # neurônios R² treino R² teste 

 

Linear 

 

Adam 63 10 0,3378 0,2898 

RMSprop 79 7 0,2981 0,2838 

SGD 73 5 0,3745 0,2628 

ReLU 

Adam 54 25 0,2229 0,0862 

RMSprop 23 23 0,1556 0,0556 

SGD 55 6 0,2279 0,0551 

Sigmoide 

Adam 142 22 0,2259 0,0952 

RMSprop 129 25 0,1542 0,0481 

SGD 161 5 0,1595 0,0560 

Tangente 
hiperbólica 

Adam 67 12 0,3266 0,2986 

RMSprop 63 15 0,3015 0,2857 

SGD 51 11 0,3280 0,2908 

Fonte: Próprio Autor 

Comparando-se agora os valores da tabela acima com os da Figura 16 e da Tabela 

3, nota-se que quando a função de saída utilizada foi a linear ou a tangente hiperbólica um 

desempenho muito maior em relação ao R² de teste foi obtido. 

Já quando as funções de saída foram a ReLU e a própria sigmoide, nota-se um 

ganho grande na complexidade da rede sem um ganho no desempenho no conjunto de 

teste que justifique o ganho de complexidade. 

Os resultados obtidos quando para a rede modelada com função de ativação da 

camada oculta como tangente hiperbólica são exibidos na Tabela 7.  
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Tabela 7 – R² de treino e teste com função tangente hiperbólica na camada oculta e variando função 
de saída, otimizador e neurônios 

Função Otimizador Épocas # neurônios R² treino R² teste 

 

Linear 

 

Adam 38 5 0,3833 0,2672 

RMSprop 38 5 0,3314 0,2616 

SGD 26 17 0,3985 0,2286 

ReLU 

Adam 68 8 0,2896 0,0970 

RMSprop 58 17 0,2403 0,0854 

SGD 30 8 0,3180 -0,0033 

Sigmoide 

Adam 90 5 0,2518 0,1025 

RMSprop 71 5 0,2160 0,0524 

SGD 67 19 0,2330 0,0915 

Tangente 
hiperbólica 

Adam 36 5 0,3372 0,2879 

RMSprop 41 5 0,3186 0,2726 

SGD 20 24 0,3383 0,2583 

Fonte: Próprio Autor 

 Por último, analisando-se os dados acima com os da Figura 16 e Tabela 4, percebe-

se que os dados se comportaram de forma análoga aos das duas tabelas anteriores, onde 

ganhos mais pronunciados foram exibidos quando a função de saída da rede foi a linear 

ou tangente hiperbólica, com ganhos de complexidade variável. 

 Essa diferença quando do uso das funções de saída pode ser explicada pelo fato 

de que a função sigmoide e a função ReLU possuem características que dificultam o 

processo de treinamento.  

 A função sigmoide possui um intervalo de saída pequeno e comprime os resultados 

de sua derivada em um espaço muito curto do eixo x, fazendo com que o gradiente 

facilmente atinja zero no momento do treinamento, o que impede um treinamento maior da 

rede. A função tangente hiperbólica por sua vez, possui um intervalo de saída maior e um 

gradiente menos concentrado. 

 Já a função ReLU, apesar de muito semelhante com a linear no intervalo positivos 

das abscissas, sofre do problema de gradientes iguais a zero quando a entrada é negativa, 

dificultando assim o refinamento dos pesos e bias da rede. 

 Percebe-se então que a função de saída da rede tem influência significativa no 

desempenho da rede neural, sendo as funções lineares e tangente hiperbólica, neste caso, 

as que favorecem resultados maiores. 
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 Apesar de as redes com a função tangente hiperbólica na saída terem obtido um 

bom desempenho quando comparadas as com outras funções de ativação, tais redes 

estariam com uma restrição quando utilizadas na predição devido ao fato de os valores 

estarem normalizados em valores z e a tangente hiperbólica ter sua saída no intervalo [-

1,1].  

Logo, os estudos feitos com funções de ativação que não a linear na camada de 

saída foram realizadas com o intuito de analisar diferentes estruturas da rede, mas não 

possuem efeito prático nesse trabalho e serão portanto descartadas deste ponto em diante. 

 Tendo-se então aplicado o mecanismo de Early Stopping para diminuir a 

intensidade de sobre ajuste da rede aos dados, verificou-se o efeito da diminuição da taxa 

de aprendizado da rede, uma vez que o mecanismo citado opera em cima da função erro 

da rede que por sua vez depende da taxa de aprendizado da mesma. 

Verificou-se então o efeito de quatro valores da taxa de aprendizado: 0,0001, 0,001, 

0,01, 0,1. Os resultados foram compilados como a média para as três funções de ativação 

pelo fato de terem exibido curvas muito semelhantes e são exibidos nas Figura 23. 

Figura 23 – R² de teste vs taxa de aprendizado para diferentes otimizadores 

 

Fonte: Próprio Autor 

Pela figura acima percebe-se que com o Adam e o RMSprop obteve-se um 

desempenho inferior no R² de teste quando se aumentou a taxa de aprendizado do 

otimizador, sendo essa queda pronunciada quando se elevou a taxa de aprendizado de 

0,01 para 0,1. Essa degradação pode ser explicada pelo fato de que quando tal parâmetro 
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é muito alto, o otimizador atualiza os pesos tão grandemente que pontos de mínimo da 

função erro não são detectados em próximos processos de atualização. 

Nota-se também que o otimizador SGD exibe uma curva diferente dos outros nos 

três primeiros pontos analisados, ou seja, ele apresenta uma melhora no R² de teste com 

o aumento da taxa de aprendizado nesse intervalo. Isso pode ser explicado pelo fato de 

que o SGD, quando utilizado com taxas de aprendizado muito baixas movimenta-se muito 

lentamente em direção ao mínimo da função erro (RUDER, 2016). 

Além disso o SGD é conhecido por uma curva de erro muito ruidosa devido a 

atualização a cada amostra apresentada ao modelo, isso aliado a uma baixa taxa de 

aprendizado e ao mecanismo de Early Stopping pode ter causado uma parada precoce do 

algoritmo. 

Dado o baixo desempenho geral da rede, variou-se também o método de estimação 

inicial da matriz de pesos e bias. Foram testados os métodos com extração da distribuição 

normal com média 0 e desvio padrão 0,05 e da distribuição uniforme no intervalo [-0,05; 

0,05]. Os resultados são exibidos na Tabela 8. 

Tabela 8 – R² de teste para diversos otimizadores variando-se o iniciador de parâmetros 

 

 

 

 

 

 

Fonte: Próprio Autor 

Percebe-se que o modo com que a matriz de parâmetros da rede é iniciada 

influencia de forma significativa como o algoritmo SGD desempenhou e em menor grau os 

outros dois otimizadores.  

A função ReLU e a função sigmoide exibiram melhor desempenho quando os 

parâmetros foram iniciados através da extração de valores da distribuição uniforme, já para 

a função tangente hiperbólica, o modo de inicialização dos parâmetros não afetou o 

desempenho. 

  Otimizador 

Função Iniciador Adam RMSprop SGD 

ReLU Uniforme 0,0799 0,1592 0,0032 

ReLU Normal 0,1219 0,1259 -0,0726 

Sigmoide Uniforme 0,1003 0,1114 -0,0065 

Sigmoide Normal 0,0708 0,1131 -0,0739 

Tanh Uniforme 0,1854 0,1863 0,1164 

Tanh Normal 0,1890 0,1788 0,1882 
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 Buscando então a melhor combinação dos parâmetros variou-se o número de 

neurônios na camada oculta entre 5 e 25 com incrementos de 5, as taxas de aprendizado 

e iniciadores demonstrados visando encontrar o melhor conjunto de parâmetros. Os cinco 

melhores modelos são exibidos na Tabela 9. 

Tabela 9 – R² de treino e teste variando-se a função de ativação, otimizador, neurônios, taxa de 
aprendizado e iniciador 

Fonte: Próprio Autor 

O melhor R² de teste obtido foi de 0,2659 para a função ReLU com o otimizador 

SGD com taxa de aprendizado de 0,01 e iniciador normal e 25 neurônios. Nota-se, no 

entanto, que o segundo e terceiro modelos obtiveram performance análoga ao melhor e 

sem um número excessivo de neurônios, o que pode ser uma dificuldade no processo de 

convergência devido ao pouco número de amostras disponíveis para treinamento. 

 Como baixos valores de R² de teste foram obtidos, argumentou-se que a rede não 

era dotada de complexidade suficiente para captar a função que verdadeiramente regia os 

dados.  

 Tendo em vista que os melhores resultados foram obtidos para redes com funções 

de ativação na primeira camada como sendo a ReLU ou a tangente hiperbólica e de que a 

inicialização de pesos para estas funções foi melhor quando se usou o método de extração 

da normal, seguiu-se com uma modelagem da rede com duas camadas dotada das 

características mencionadas. Os cinco melhores modelos obtidos são exibidos na Tabela 

10. 

 

 

 

 

 

Função Otimizador Épocas Neurônios 
Taxa de 

aprendizado 
Iniciador 

R² 
treino 

R² 
teste 

ReLU SGD 44 25 0,01 Normal 0,6800 0,2659 

Tanh Adam 29 15 0,01 Uniforme 0,4123 0,2453 

Tanh RMSprop 30 15 0,01 Normal 0,3609 0,2431 

Tanh RMSprop 30 10 0,01 Normal 0,3640 0,2318 

ReLU Adam 30 25 0,0001 Uniforme 0,4680 0,2281 
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Tabela 10 – R² de teste para rede neural de duas camadas 

Fonte: Próprio Autor  

Nota-se que uma melhoria de cerca de 14% comparando os melhores modelos foi 

observada quando se modelou a rede com duas camadas. No entanto, esse incremento 

no R² de teste é pequeno quando comparado com o ganho de complexidade no 

treinamento da rede, tendo em vista que quanto mais parâmetros a serem determinados, 

mais amostras são necessárias para um processo de treinamento completo. 

 Pelo motivo acima não foi considerado um aumento no número de camadas da rede 

e parou-se aqui o crescimento da rede. O melhor modelo obtido então foi o com a tangente 

hiperbólica na primeira camada de 8 neurônios, ReLU na segunda camada de 8 neurônios, 

otimizador Adam com um R² de treino de 0,3918 e de teste de 0,3034. 

 Comparou-se então o desempenho da rede neural com a regressão linear, sendo 

que o método de seleção das variáveis para o modelo linear foi o método Stepwise.  

Na modelagem da regressão linear considerou-se uma abordagem na qual a média 

dos valores das variáveis preditoras por variável dependente era utilizada aos invés das 10 

leituras recomendadas pelo fabricante do nariz eletrônico. 

Os resultados obtidos para a rede neural e para a regressão linear são exibidos nas 

Figuras 24 e 25. 

 

 

 

 

 

 

Função 
Camada 

1 

Função 
Camada 

2 

Neurônios 
Camada 1 

Neurônios 
Camada 2 

Otimizador Épocas R² teste 

Tanh ReLU 8 8 Adam 45 0,3034 

Tanh ReLU 7 13 Adam 55 0,2898 

Tanh Tanh 20 25 Adam 56 0,2867 

Tanh ReLU 10 8 RMSprop 57 0,2861 

Tanh ReLU 8 9 Adam 48 0,2860 
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Figura 24 – R² de treino e teste para a rede neural final 

 

Fonte: Próprio Autor 

 

Figura 25 – Acidez estimada vs Acidez real para a regressão linear multivariada 

 

Fonte: Próprio Autor 

Para a regressão linear os R² obtidos foram de 0,9664 e 0,915 para os conjuntos 

de treino e validação, respectivamente, utilizando-se as variáveis independentes M2, P6  

K19 e intercepto. Neste caso M é calculado como A + B*K. 

Nota-se então que a regressão linear obteve um desempenho muito superior ao da 

rede neural obtida. Essa diferença na performance pode ser explicada pela dificuldade de 

obter-se boas estimativas dos coeficientes da rede neural visto o grande número de 

parâmetros a serem treinados versus o número de amostras disponíveis para tal. 

O número de amostras disponíveis para treino de uma rede neural então impõe-se 

como um problema na aplicação do trabalho em questão, visto que o número de 

parâmetros treináveis era muito superior ao de amostras. Na rede elaborada, por exemplo, 
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tem-se 40, 64 e 8 elementos pesos na primeira camada oculta, segunda camada oculta e 

camada de saída, mais 8, 8 e 5 elementos bias. 

Logo, ainda que a rede tivesse obtido um desempenho minimante satisfatório, tal 

valor deveria ser contestado ainda assim, visto que o número de graus de liberdade seria 

negativo, o que acarretaria em problemas quanto à confiabilidade do uso do modelo em 

novas amostras. 

O número de graus liberdade fornece informação acerca da confiança na 

variabilidade dos parâmetros estimados de um dado modelo. É comumente definido como 

a diferença entre o número de amostras disponíveis menos o número de parâmetros ou 

número de relações necessárias para obtenção de tais parâmetros de um modelo de 

escolha (ZOURNAZI, 2017). 
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5 CONCLUSÃO 

 Nesse trabalho verificou-se a capacidade de redes neurais em estimar a acidez de 

óleos vegetais tendo como variável independente os parâmetros do algoritmo estocástico 

desenvolvido por SIQUEIRA et al., (2018) para modelagem do sinal lido por um nariz 

eletrônico. 

Os resultados obtidos indicam que as redes neurais não são uma boa escolha de 

algoritmo para este objetivo, o que pode ser atribuído ao baixo número de amostras 

disponíveis para treinamento. 

Quanto a isso, dois pontos são de ressalva: a importância de um número razoável 

de amostras para treinamento adequado da rede de forma a obter uma melhor estimativa 

dos coeficientes das matrizes de peso e bias; um número razoável de graus de liberdade 

de uma rede neural com bom desempenho tendo em vista que o número de parâmetros 

treináveis de uma rede cresce muito rapidamente. 

Deve-se então atentar a esses dois fatores quando da escolha de uma rede neural 

como modelo para determinada tarefa, especialmente dado o teorema de Kolmogorov 

(KŮRKOVÁ, 1992) que diz que uma rede neural de duas camadas ocultas e número 

adequado de neurônios consegue aproximar qualquer função contínua. 

Outro fator que pode ter contribuído para um baixo desempenho da rede foi a 

escolha das variáveis independentes. Outros métodos de escolha de variáveis como o de 

importância da variável FISHER; RUDIN; DOMINICI (2018), no entanto, não foram 

considerados neste trabalho. 

Tem-se como hipótese também a falta de complexidade da rede, no entanto, devido 

à baixa quantidade de amostras para treino, um ganho progressivo da complexidade dos 

modelos não foi possível. 

 Algoritmos que necessitam de um menor número de amostras para estimação dos 

parâmetros, como a regressão linear, exibiram desempenho muito superior ao da rede, 

podendo essa grande diferença de desempenho ser explicada pela melhor determinação 

da regressão de seus parâmetros mesmo com uma baixa quantidade de amostras 

disponíveis.  
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